File size: 2,089 Bytes
e47b96b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
license: apache-2.0
base_model: facebook/wav2vec2-large-xlsr-53
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: mascir_fr_wav2vec_test
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mascir_fr_wav2vec_test
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0136
- Wer: 0.1612
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 100
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log | 8.06 | 250 | 3.7503 | 0.9919 |
| 8.0637 | 16.13 | 500 | 3.0132 | 0.9919 |
| 8.0637 | 24.19 | 750 | 2.9734 | 0.9919 |
| 2.9339 | 32.26 | 1000 | 2.0538 | 0.9963 |
| 2.9339 | 40.32 | 1250 | 0.4530 | 0.5406 |
| 0.9878 | 48.39 | 1500 | 0.1807 | 0.3373 |
| 0.9878 | 56.45 | 1750 | 0.0814 | 0.2436 |
| 0.3416 | 64.52 | 2000 | 0.0512 | 0.2114 |
| 0.3416 | 72.58 | 2250 | 0.0292 | 0.1823 |
| 0.1952 | 80.65 | 2500 | 0.0198 | 0.1742 |
| 0.1952 | 88.71 | 2750 | 0.0158 | 0.1631 |
| 0.1476 | 96.77 | 3000 | 0.0136 | 0.1612 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.1
- Tokenizers 0.13.3
|