--- library_name: transformers license: apache-2.0 base_model: openai/whisper-large-v3 tags: - generated_from_trainer metrics: - wer model-index: - name: no-voice-clone-large-finetune-test results: [] --- [Visualize in Weights & Biases](https://wandb.ai/testgokulepiphany/finetune_given_imperative_final/runs/p0thi8mj) # no-voice-clone-large-finetune-test This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4622 - Wer: 20.1897 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 0.0088 | 4.6729 | 250 | 0.5014 | 21.1681 | | 0.0079 | 9.3458 | 500 | 0.5158 | 29.2321 | | 0.0001 | 14.0187 | 750 | 0.4311 | 23.9253 | | 0.0 | 18.6916 | 1000 | 0.4457 | 20.5752 | | 0.0 | 23.3645 | 1250 | 0.4520 | 20.6048 | | 0.0 | 28.0374 | 1500 | 0.4560 | 20.1897 | | 0.0 | 32.7103 | 1750 | 0.4588 | 20.1601 | | 0.0 | 37.3832 | 2000 | 0.4607 | 20.1304 | | 0.0 | 42.0561 | 2250 | 0.4618 | 20.2490 | | 0.0 | 46.7290 | 2500 | 0.4622 | 20.1897 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3