--- language: "en" tags: - text-to-speech - TTS - speech-synthesis - Tacotron2 - speechbrain license: "apache-2.0" datasets: - LJSpeech metrics: - mos --- # Sunbird AI Text-to-Speech (TTS) model trained on Luganda text ### Text-to-Speech (TTS) with Tacotron2 trained on Professional Studio Recordings This repository provides all the necessary tools for Text-to-Speech (TTS) with SpeechBrain using a [Tacotron2](https://arxiv.org/abs/1712.05884) pretrained on [LJSpeech](https://keithito.com/LJ-Speech-Dataset/). The pre-trained model takes in input a short text and produces a spectrogram in output. One can get the final waveform by applying a vocoder (e.g., HiFIGAN) on top of the generated spectrogram. ### Install SpeechBrain ``` pip install speechbrain ``` Please notice that we encourage you to read our tutorials and learn more about [SpeechBrain](https://speechbrain.github.io). ### Perform Text-to-Speech (TTS) ``` import torchaudio from speechbrain.pretrained import Tacotron2 from speechbrain.pretrained import HIFIGAN # Intialize TTS (tacotron2) and Vocoder (HiFIGAN) tacotron2 = Tacotron2.from_hparams(source="speechbrain/tts-tacotron2-ljspeech", savedir="tmpdir_tts") hifi_gan = HIFIGAN.from_hparams(source="speechbrain/tts-hifigan-ljspeech", savedir="tmpdir_vocoder") # Running the TTS mel_output, mel_length, alignment = tacotron2.encode_text("Mbagaliza Christmass Enungi Nomwaka Omugya Gubaberere Gwamirembe") # Running Vocoder (spectrogram-to-waveform) waveforms = hifi_gan.decode_batch(mel_output) # Save the waverform torchaudio.save('example_TTS.wav',waveforms.squeeze(1), 22050) ``` If you want to generate multiple sentences in one-shot, you can do in this way: ``` from speechbrain.pretrained import Tacotron2 tacotron2 = Tacotron2.from_hparams(source="speechbrain/TTS_Tacotron2", savedir="tmpdir") items = [ "Nsanyuse okukulaba", "Erinnya lyo ggwe ani?", "Mbagaliza Christmass Enungi Nomwaka Omugya Gubaberere Gwamirembe" ] mel_outputs, mel_lengths, alignments = tacotron2.encode_batch(items) ``` ### Inference on GPU To perform inference on the GPU, add `run_opts={"device":"cuda"}` when calling the `from_hparams` method.