End of training
Browse files
README.md
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-sa-4.0
|
3 |
+
base_model: microsoft/layoutlmv3-base
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
- f1
|
10 |
+
- accuracy
|
11 |
+
model-index:
|
12 |
+
- name: layoutlmv3-finetuned-invoice
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# layoutlmv3-finetuned-invoice
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on an unknown dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.2568
|
24 |
+
- Precision: 0.7955
|
25 |
+
- Recall: 0.6931
|
26 |
+
- F1: 0.7407
|
27 |
+
- Accuracy: 0.9524
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 1e-05
|
47 |
+
- train_batch_size: 2
|
48 |
+
- eval_batch_size: 2
|
49 |
+
- seed: 42
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- training_steps: 2000
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
57 |
+
|:-------------:|:--------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
58 |
+
| No log | 9.0909 | 100 | 0.8724 | 0.0270 | 0.0099 | 0.0145 | 0.7931 |
|
59 |
+
| No log | 18.1818 | 200 | 0.3880 | 0.4299 | 0.4554 | 0.4423 | 0.9126 |
|
60 |
+
| No log | 27.2727 | 300 | 0.2870 | 0.6 | 0.4158 | 0.4912 | 0.9229 |
|
61 |
+
| No log | 36.3636 | 400 | 0.3227 | 0.6389 | 0.4554 | 0.5318 | 0.9242 |
|
62 |
+
| 0.6024 | 45.4545 | 500 | 0.3251 | 0.6092 | 0.5248 | 0.5638 | 0.9280 |
|
63 |
+
| 0.6024 | 54.5455 | 600 | 0.2188 | 0.6842 | 0.6436 | 0.6633 | 0.9422 |
|
64 |
+
| 0.6024 | 63.6364 | 700 | 0.2146 | 0.7159 | 0.6238 | 0.6667 | 0.9447 |
|
65 |
+
| 0.6024 | 72.7273 | 800 | 0.2138 | 0.8202 | 0.7228 | 0.7684 | 0.9563 |
|
66 |
+
| 0.6024 | 81.8182 | 900 | 0.2128 | 0.7927 | 0.6436 | 0.7104 | 0.9499 |
|
67 |
+
| 0.0428 | 90.9091 | 1000 | 0.2400 | 0.7753 | 0.6832 | 0.7263 | 0.9512 |
|
68 |
+
| 0.0428 | 100.0 | 1100 | 0.2498 | 0.7821 | 0.6040 | 0.6816 | 0.9434 |
|
69 |
+
| 0.0428 | 109.0909 | 1200 | 0.2614 | 0.7805 | 0.6337 | 0.6995 | 0.9447 |
|
70 |
+
| 0.0428 | 118.1818 | 1300 | 0.2742 | 0.7821 | 0.6040 | 0.6816 | 0.9447 |
|
71 |
+
| 0.0428 | 127.2727 | 1400 | 0.2744 | 0.7471 | 0.6436 | 0.6915 | 0.9473 |
|
72 |
+
| 0.0091 | 136.3636 | 1500 | 0.2568 | 0.7955 | 0.6931 | 0.7407 | 0.9524 |
|
73 |
+
| 0.0091 | 145.4545 | 1600 | 0.2711 | 0.7701 | 0.6634 | 0.7128 | 0.9486 |
|
74 |
+
| 0.0091 | 154.5455 | 1700 | 0.3043 | 0.7778 | 0.6238 | 0.6923 | 0.9434 |
|
75 |
+
| 0.0091 | 163.6364 | 1800 | 0.2746 | 0.7683 | 0.6238 | 0.6885 | 0.9434 |
|
76 |
+
| 0.0091 | 172.7273 | 1900 | 0.2646 | 0.7955 | 0.6931 | 0.7407 | 0.9524 |
|
77 |
+
| 0.0056 | 181.8182 | 2000 | 0.2681 | 0.7955 | 0.6931 | 0.7407 | 0.9524 |
|
78 |
+
|
79 |
+
|
80 |
+
### Framework versions
|
81 |
+
|
82 |
+
- Transformers 4.41.0.dev0
|
83 |
+
- Pytorch 2.2.2+cpu
|
84 |
+
- Datasets 2.19.0
|
85 |
+
- Tokenizers 0.19.1
|