--- license: cc-by-nc-sa-4.0 base_model: microsoft/layoutlmv3-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-finetuned-invoice results: [] --- # layoutlmv3-finetuned-invoice This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2568 - Precision: 0.7955 - Recall: 0.6931 - F1: 0.7407 - Accuracy: 0.9524 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 2000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:--------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 9.0909 | 100 | 0.8724 | 0.0270 | 0.0099 | 0.0145 | 0.7931 | | No log | 18.1818 | 200 | 0.3880 | 0.4299 | 0.4554 | 0.4423 | 0.9126 | | No log | 27.2727 | 300 | 0.2870 | 0.6 | 0.4158 | 0.4912 | 0.9229 | | No log | 36.3636 | 400 | 0.3227 | 0.6389 | 0.4554 | 0.5318 | 0.9242 | | 0.6024 | 45.4545 | 500 | 0.3251 | 0.6092 | 0.5248 | 0.5638 | 0.9280 | | 0.6024 | 54.5455 | 600 | 0.2188 | 0.6842 | 0.6436 | 0.6633 | 0.9422 | | 0.6024 | 63.6364 | 700 | 0.2146 | 0.7159 | 0.6238 | 0.6667 | 0.9447 | | 0.6024 | 72.7273 | 800 | 0.2138 | 0.8202 | 0.7228 | 0.7684 | 0.9563 | | 0.6024 | 81.8182 | 900 | 0.2128 | 0.7927 | 0.6436 | 0.7104 | 0.9499 | | 0.0428 | 90.9091 | 1000 | 0.2400 | 0.7753 | 0.6832 | 0.7263 | 0.9512 | | 0.0428 | 100.0 | 1100 | 0.2498 | 0.7821 | 0.6040 | 0.6816 | 0.9434 | | 0.0428 | 109.0909 | 1200 | 0.2614 | 0.7805 | 0.6337 | 0.6995 | 0.9447 | | 0.0428 | 118.1818 | 1300 | 0.2742 | 0.7821 | 0.6040 | 0.6816 | 0.9447 | | 0.0428 | 127.2727 | 1400 | 0.2744 | 0.7471 | 0.6436 | 0.6915 | 0.9473 | | 0.0091 | 136.3636 | 1500 | 0.2568 | 0.7955 | 0.6931 | 0.7407 | 0.9524 | | 0.0091 | 145.4545 | 1600 | 0.2711 | 0.7701 | 0.6634 | 0.7128 | 0.9486 | | 0.0091 | 154.5455 | 1700 | 0.3043 | 0.7778 | 0.6238 | 0.6923 | 0.9434 | | 0.0091 | 163.6364 | 1800 | 0.2746 | 0.7683 | 0.6238 | 0.6885 | 0.9434 | | 0.0091 | 172.7273 | 1900 | 0.2646 | 0.7955 | 0.6931 | 0.7407 | 0.9524 | | 0.0056 | 181.8182 | 2000 | 0.2681 | 0.7955 | 0.6931 | 0.7407 | 0.9524 | ### Framework versions - Transformers 4.41.0.dev0 - Pytorch 2.2.2+cpu - Datasets 2.19.0 - Tokenizers 0.19.1