ggrn commited on
Commit
8ad6981
1 Parent(s): e46de34

docs: readme

Browse files
Files changed (1) hide show
  1. README.md +318 -0
README.md CHANGED
@@ -0,0 +1,318 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: feature-extraction
3
+ library_name: "transformers.js"
4
+ language:
5
+ - en
6
+ license: mit
7
+ ---
8
+
9
+ _Fork of https://huggingface.co/BAAI/bge-small-en with ONNX weights to be compatible with Transformers.js. See [JavaScript usage](#javascript)._
10
+
11
+ ---
12
+
13
+ <h1 align="center">FlagEmbedding</h1>
14
+
15
+ <h4 align="center">
16
+ <p>
17
+ <a href=#model-list>Model List</a> |
18
+ <a href=#usage>Usage</a> |
19
+ <a href="#evaluation">Evaluation</a> |
20
+ <a href="#train">Train</a> |
21
+ <a href="#license">License</a>
22
+ <p>
23
+ </h4>
24
+
25
+ For more details please refer to our GitHub repo: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding).
26
+
27
+ [English](README.md) | [中文](https://github.com/FlagOpen/FlagEmbedding/blob/master/README_zh.md)
28
+
29
+ FlagEmbedding can map any text to a low-dimensional dense vector which can be used for tasks like retrieval, classification, clustering, or semantic search.
30
+ And it also can be used in vector databases for LLMs.
31
+
32
+ ************* 🌟**Updates**🌟 *************
33
+ - 08/05/2023: Release base-scale and small-scale models, **best performance among the models of the same size 🤗**
34
+ - 08/02/2023: Release `bge-large-*`(short for BAAI General Embedding) Models, **rank 1st on MTEB and C-MTEB benchmark!** :tada: :tada:
35
+ - 08/01/2023: We release the [Chinese Massive Text Embedding Benchmark](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB) (**C-MTEB**), consisting of 31 test dataset.
36
+
37
+
38
+ ## Model List
39
+
40
+ `bge` is short for `BAAI general embedding`.
41
+
42
+ | Model | Language | Description | query instruction for retrieval |
43
+ |:-------------------------------|:--------:| :--------:| :--------:|
44
+ | [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en) | English | :trophy: rank **1st** in [MTEB](https://huggingface.co/spaces/mteb/leaderboard) leaderboard | `Represent this sentence for searching relevant passages: ` |
45
+ | [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en) | English | rank **2nd** in [MTEB](https://huggingface.co/spaces/mteb/leaderboard) leaderboard | `Represent this sentence for searching relevant passages: ` |
46
+ | [BAAI/bge-small-en](https://huggingface.co/BAAI/bge-small-en) | English | a small-scale model but with competitive performance | `Represent this sentence for searching relevant passages: ` |
47
+ | [BAAI/bge-small-en](https://huggingface.co/BAAI/bge-small-en) | Chinese | :trophy: rank **1st** in [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB) benchmark | `为这个句子生成表示以用于检索相关文章:` |
48
+ | [BAAI/bge-small-en-noinstruct](https://huggingface.co/BAAI/bge-small-en-noinstruct) | Chinese | This model is trained without instruction, and rank **2nd** in [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB) benchmark | |
49
+ | [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | Chinese | a base-scale model but has similar ability with `bge-large-zh` | `为这个句子生成表示以用于检索相关文章:` |
50
+ | [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | Chinese | a small-scale model but with competitive performance | `为这个句子生成表示以用于检索相关文章:` |
51
+
52
+
53
+
54
+ ## Usage
55
+
56
+ This model can be used with both [Python](#python) and [JavaScript](#javascript).
57
+
58
+ ### Python
59
+
60
+ #### Use with [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md)
61
+
62
+ ```
63
+ pip install -U FlagEmbedding
64
+ ```
65
+ See [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md) for more methods to install FlagEmbedding.
66
+
67
+ ```python
68
+ from FlagEmbedding import FlagModel
69
+ sentences = ["样例数据-1", "样例数据-2"]
70
+ model = FlagModel('Supabase/bge-small-en', query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:")
71
+ embeddings = model.encode(sentences)
72
+ print(embeddings)
73
+
74
+ # for retrieval task, please use encode_queries() which will automatically add the instruction to each query
75
+ # corpus in retrieval task can still use encode() or encode_corpus()
76
+ queries = ['query_1', 'query_2']
77
+ passages = ["样例段落-1", "样例段落-2"]
78
+ q_embeddings = model.encode_queries(queries)
79
+ p_embeddings = model.encode(passages)
80
+ scores = q_embeddings @ p_embeddings.T
81
+ ```
82
+ The value of argument `query_instruction_for_retrieval` see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list).
83
+
84
+ FlagModel will use all available GPUs when encoding, please set `os.environ["CUDA_VISIBLE_DEVICES"]` to choose GPU.
85
+
86
+ #### Use with [sentence-transformers](https://www.sbert.net/)
87
+
88
+ Using this model also is easy when you have [sentence-transformers](https://www.SBERT.net) installed:
89
+
90
+ ```
91
+ pip install -U sentence-transformers
92
+ ```
93
+ ```python
94
+ from sentence_transformers import SentenceTransformer
95
+ sentences = ["样例数据-1", "样例数据-2"]
96
+ model = SentenceTransformer('Supabase/bge-small-en')
97
+ embeddings = model.encode(sentences, normalize_embeddings=True)
98
+ print(embeddings)
99
+ ```
100
+ For retrieval task,
101
+ each query should start with an instruction (instructions see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list)).
102
+ ```python
103
+ from sentence_transformers import SentenceTransformer
104
+ queries = ["手机开不了机怎么办?"]
105
+ passages = ["样例段落-1", "样例段落-2"]
106
+ instruction = "为这个句子生成表示以用于检索相关文章:"
107
+
108
+ model = SentenceTransformer('Supabase/bge-small-en')
109
+ q_embeddings = model.encode([instruction+q for q in queries], normalize_embeddings=True)
110
+ p_embeddings = model.encode(passages, normalize_embeddings=True)
111
+ scores = q_embeddings @ p_embeddings.T
112
+ ```
113
+
114
+ #### Use with [Transformers](https://huggingface.co/docs/transformers/index) and [PyTorch](https://pytorch.org/docs/stable/index.html)
115
+
116
+ With transformers package, you can use the model like this: First, you pass your input through the transformer model, then you select the last hidden state of first token (i.e., [CLS]) as the sentence embedding.
117
+
118
+ ```python
119
+ from transformers import AutoTokenizer, AutoModel
120
+ import torch
121
+ # Sentences we want sentence embeddings for
122
+ sentences = ["样例数据-1", "样例数据-2"]
123
+
124
+ # Load model from HuggingFace Hub
125
+ tokenizer = AutoTokenizer.from_pretrained('Supabase/bge-small-en')
126
+ model = AutoModel.from_pretrained('Supabase/bge-small-en')
127
+
128
+ # Tokenize sentences
129
+ encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
130
+ # for retrieval task, add an instruction to query
131
+ # encoded_input = tokenizer([instruction + q for q in queries], padding=True, truncation=True, return_tensors='pt')
132
+
133
+ # Compute token embeddings
134
+ with torch.no_grad():
135
+ model_output = model(**encoded_input)
136
+ # Perform pooling. In this case, cls pooling.
137
+ sentence_embeddings = model_output[0][:, 0]
138
+ # normalize embeddings
139
+ sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, dim=1)
140
+ print("Sentence embeddings:", sentence_embeddings)
141
+ ```
142
+
143
+ ### JavaScript
144
+
145
+ This model can be used with JavaScript via [Transformers.js](https://huggingface.co/docs/transformers.js/index).
146
+
147
+ #### Use with [Deno](https://deno.land/manual/introduction) or [Supabase Edge Functions](https://supabase.com/docs/guides/functions)
148
+
149
+ ```ts
150
+ import { serve } from 'https://deno.land/std@0.168.0/http/server.ts'
151
+ import { env, pipeline } from 'https://cdn.jsdelivr.net/npm/@xenova/transformers@2.5.0'
152
+ // Configuration for Deno runtime
153
+ env.useBrowserCache = false;
154
+ env.allowLocalModels = false;
155
+ const pipe = await pipeline(
156
+ 'feature-extraction',
157
+ 'Supabase/bge-small-en',
158
+ );
159
+ serve(async (req) => {
160
+ // Extract input string from JSON body
161
+ const { input } = await req.json();
162
+ // Generate the embedding from the user input
163
+ const output = await pipe(input, {
164
+ pooling: 'mean',
165
+ normalize: true,
166
+ });
167
+ // Extract the embedding output
168
+ const embedding = Array.from(output.data);
169
+ // Return the embedding
170
+ return new Response(
171
+ JSON.stringify({ embedding }),
172
+ { headers: { 'Content-Type': 'application/json' } }
173
+ );
174
+ });
175
+ ```
176
+
177
+ #### Use within the browser ([JavaScript Modules](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules))
178
+
179
+ ```html
180
+ <script type="module">
181
+ import { pipeline } from 'https://cdn.jsdelivr.net/npm/@xenova/transformers@2.5.0';
182
+ const pipe = await pipeline(
183
+ 'feature-extraction',
184
+ 'Supabase/bge-small-en',
185
+ );
186
+ // Generate the embedding from text
187
+ const output = await pipe('Hello world', {
188
+ pooling: 'mean',
189
+ normalize: true,
190
+ });
191
+ // Extract the embedding output
192
+ const embedding = Array.from(output.data);
193
+ console.log(embedding);
194
+ </script>
195
+ ```
196
+
197
+ #### Use within [Node.js](https://nodejs.org/en/docs) or a web bundler ([Webpack](https://webpack.js.org/concepts/), etc)
198
+
199
+ ```js
200
+ import { pipeline } from '@xenova/transformers';
201
+ const pipe = await pipeline(
202
+ 'feature-extraction',
203
+ 'Supabase/bge-small-en',
204
+ );
205
+ // Generate the embedding from text
206
+ const output = await pipe('Hello world', {
207
+ pooling: 'mean',
208
+ normalize: true,
209
+ });
210
+ // Extract the embedding output
211
+ const embedding = Array.from(output.data);
212
+ console.log(embedding);
213
+ ```
214
+
215
+ ## Evaluation
216
+ `baai-general-embedding` models achieve **state-of-the-art performance on both MTEB and C-MTEB leaderboard!**
217
+ More details and evaluation tools see our [scripts](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md).
218
+
219
+ - **MTEB**:
220
+
221
+ | Model Name | Dimension | Sequence Length | Average (56) | Retrieval (15) |Clustering (11) | Pair Classification (3) | Reranking (4) | STS (10) | Summarization (1) | Classification (12) |
222
+ |:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
223
+ | [**bge-large-en**](https://huggingface.co/BAAI/bge-large-en) | 1024 | 512 | **63.98** | **53.9** | **46.98** | 85.8 | **59.48** | 81.56 | 32.06 | **76.21** |
224
+ | [**bge-base-en**](https://huggingface.co/BAAI/bge-base-en) | 768 | 512 | 63.36 | 53.0 | 46.32 | 85.86 | 58.7 | 81.84 | 29.27 | 75.27 |
225
+ | [gte-large](https://huggingface.co/thenlper/gte-large) | 1024 | 512 | 63.13 | 52.22 | 46.84 | 85.00 | 59.13 | 83.35 | 31.66 | 73.33 |
226
+ | [gte-base](https://huggingface.co/thenlper/gte-base) | 768 | 512 | 62.39 | 51.14 | 46.2 | 84.57 | 58.61 | 82.3 | 31.17 | 73.01 |
227
+ | [e5-large-v2](https://huggingface.co/intfloat/e5-large-v2) | 1024| 512 | 62.25 | 50.56 | 44.49 | 86.03 | 56.61 | 82.05 | 30.19 | 75.24 |
228
+ | [**bge-small-en**](https://huggingface.co/BAAI/bge-small-en) | 384 | 512 | 62.11 | 51.82 | 44.31 | 83.78 | 57.97 | 80.72 | 30.53 | 74.37 |
229
+ | [instructor-xl](https://huggingface.co/hkunlp/instructor-xl) | 768 | 512 | 61.79 | 49.26 | 44.74 | 86.62 | 57.29 | 83.06 | 32.32 | 61.79 |
230
+ | [e5-base-v2](https://huggingface.co/intfloat/e5-base-v2) | 768 | 512 | 61.5 | 50.29 | 43.80 | 85.73 | 55.91 | 81.05 | 30.28 | 73.84 |
231
+ | [bge-small-en](https://huggingface.co/thenlper/bge-small-en) | 384 | 512 | 61.36 | 49.46 | 44.89 | 83.54 | 57.7 | 82.07 | 30.42 | 72.31 |
232
+ | [text-embedding-ada-002](https://platform.openai.com/docs/guides/embeddings) | 1536 | 8192 | 60.99 | 49.25 | 45.9 | 84.89 | 56.32 | 80.97 | 30.8 | 70.93 |
233
+ | [e5-small-v2](https://huggingface.co/intfloat/e5-base-v2) | 384 | 512 | 59.93 | 49.04 | 39.92 | 84.67 | 54.32 | 80.39 | 31.16 | 72.94 |
234
+ | [sentence-t5-xxl](https://huggingface.co/sentence-transformers/sentence-t5-xxl) | 768 | 512 | 59.51 | 42.24 | 43.72 | 85.06 | 56.42 | 82.63 | 30.08 | 73.42 |
235
+ | [all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) | 768 | 514 | 57.78 | 43.81 | 43.69 | 83.04 | 59.36 | 80.28 | 27.49 | 65.07 |
236
+ | [sgpt-bloom-7b1-msmarco](https://huggingface.co/bigscience/sgpt-bloom-7b1-msmarco) | 4096 | 2048 | 57.59 | 48.22 | 38.93 | 81.9 | 55.65 | 77.74 | 33.6 | 66.19 |
237
+ | [all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2) | 384 | 512 | 56.53 | 42.69 | 41.81 | 82.41 | 58.44 | 79.8 | 27.9 | 63.21 |
238
+ | [all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) | 384 | 512 | 56.26 | 41.95 | 42.35 | 82.37 | 58.04 | 78.9 | 30.81 | 63.05 |
239
+ | [contriever-base-msmarco](https://huggingface.co/nthakur/contriever-base-msmarco) | 768 | 512 | 56.00 | 41.88 | 41.1 | 82.54 | 53.14 | 76.51 | 30.36 | 66.68 |
240
+ | [sentence-t5-base](https://huggingface.co/sentence-transformers/sentence-t5-base) | 768 | 512 | 55.27 | 33.63 | 40.21 | 85.18 | 53.09 | 81.14 | 31.39 | 69.81 |
241
+
242
+
243
+
244
+ - **C-MTEB**:
245
+ We create a benchmark C-MTEB for Chinese text embedding which consists of 31 datasets from 6 tasks.
246
+ Please refer to [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md) for a detailed introduction.
247
+
248
+ | Model | Embedding dimension | Avg | Retrieval | STS | PairClassification | Classification | Reranking | Clustering |
249
+ |:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|
250
+ | [**bge-large-zh**](https://huggingface.co/BAAI/bge-small-en) | 1024 | **64.20** | **71.53** | **53.23** | **78.94** | 72.26 | **65.11** | 48.39 |
251
+ | [**bge-large-zh-noinstruct**](https://huggingface.co/BAAI/bge-small-en-noinstruct) | 1024 | 63.53 | 70.55 | 50.98 | 76.77 | **72.49** | 64.91 | **50.01** |
252
+ | [**BAAI/bge-base-zh**](https://huggingface.co/BAAI/bge-base-zh) | 768 | 62.96 | 69.53 | 52.05 | 77.5 | 70.98 | 64.91 | 47.63 |
253
+ | [**BAAI/bge-small-zh**](https://huggingface.co/BAAI/bge-small-zh) | 512 | 58.27 | 63.07 | 46.87 | 70.35 | 67.78 | 61.48 | 45.09 |
254
+ | [m3e-base](https://huggingface.co/moka-ai/m3e-base) | 768 | 57.10 |56.91 | 48.15 | 63.99 | 70.28 | 59.34 | 47.68 |
255
+ | [m3e-large](https://huggingface.co/moka-ai/m3e-large) | 1024 | 57.05 |54.75 | 48.64 | 64.3 | 71.22 | 59.66 | 48.88 |
256
+ | [text-embedding-ada-002(OpenAI)](https://platform.openai.com/docs/guides/embeddings/what-are-embeddings) | 1536 | 53.02 | 52.0 | 40.61 | 69.56 | 67.38 | 54.28 | 45.68 |
257
+ | [luotuo](https://huggingface.co/silk-road/luotuo-bert-medium) | 1024 | 49.37 | 44.4 | 39.41 | 66.62 | 65.29 | 49.25 | 44.39 |
258
+ | [text2vec](https://huggingface.co/shibing624/text2vec-base-chinese) | 768 | 47.63 | 38.79 | 41.71 | 67.41 | 65.18 | 49.45 | 37.66 |
259
+ | [text2vec-large](https://huggingface.co/GanymedeNil/text2vec-large-chinese) | 1024 | 47.36 | 41.94 | 41.98 | 70.86 | 63.42 | 49.16 | 30.02 |
260
+
261
+
262
+
263
+ ## Train
264
+ This section will introduce the way we used to train the general embedding.
265
+ The training scripts are in [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md),
266
+ and we provide some examples to do [pre-train](https://github.com/FlagOpen/FlagEmbedding/blob/master/examples/pretrain/README.md) and [fine-tune](https://github.com/FlagOpen/FlagEmbedding/blob/master/examples/finetune/README.md).
267
+
268
+
269
+ **1. RetroMAE Pre-train**
270
+ We pre-train the model following the method [retromae](https://github.com/staoxiao/RetroMAE),
271
+ which shows promising improvement in retrieval task ([paper](https://aclanthology.org/2022.emnlp-main.35.pdf)).
272
+ The pre-training was conducted on 24 A100(40G) GPUs with a batch size of 720.
273
+ In retromae, the mask ratio of encoder and decoder are 0.3, and 0.5 respectively.
274
+ We used the AdamW optimizer and the learning rate is 2e-5.
275
+
276
+ **Pre-training data**:
277
+ - English:
278
+ - [Pile](https://pile.eleuther.ai/)
279
+ - [wikipedia](https://huggingface.co/datasets/wikipedia)
280
+ - [msmarco](https://huggingface.co/datasets/Tevatron/msmarco-passage-corpus)
281
+ - Chinese:
282
+ - Subset of [wudao](https://github.com/BAAI-WuDao/Data)
283
+ - [baidu-baike](https://baike.baidu.com/)
284
+
285
+
286
+ **2. Finetune**
287
+ We fine-tune the model using a contrastive objective.
288
+ The format of input data is a triple`(query, positive, negative)`.
289
+ Besides the negative in the triple, we also adopt in-batch negatives strategy.
290
+ We employ the cross-device negatives sharing method to share negatives among different GPUs,
291
+ which can dramatically **increase the number of negatives**.
292
+
293
+ We trained our model on 48 A100(40G) GPUs with a large batch size of 32,768 (so there are **65,535** negatives for each query in a batch).
294
+ We used the AdamW optimizer and the learning rate is 1e-5.
295
+ The temperature for contrastive loss is 0.01.
296
+
297
+ For the version with `*-instrcution`, we add instruction to the query for retrieval task in the training.
298
+ For english, the instruction is `Represent this sentence for searching relevant passages: `;
299
+ For chinese, the instruction is `为这个句子生成表示以用于检索相关文章:`.
300
+ In the evaluation, the instruction should be added for sentence to passages retrieval task, not be added for other tasks.
301
+
302
+
303
+ The finetune script is accessible in this repository: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md).
304
+ You can easily finetune your model with it.
305
+
306
+ **Training data**:
307
+
308
+ - For English, we collect 230M text pairs from [wikipedia](https://huggingface.co/datasets/wikipedia), [cc-net](https://github.com/facebookresearch/cc_net), and so on.
309
+
310
+ - For chinese, we collect 120M text pairs from [wudao](https://github.com/BAAI-WuDao/Data), [simclue](https://github.com/CLUEbenchmark/SimCLUE) and so on.
311
+
312
+ **The data collection is to be released in the future.**
313
+
314
+ We will continually update the embedding models and training codes,
315
+ hoping to promote the development of the embedding model community.
316
+
317
+ ## License
318
+ FlagEmbedding is licensed under [MIT License](https://github.com/FlagOpen/FlagEmbedding/blob/master/LICENSE). The released models can be used for commercial purposes free of charge.