docs: readme
Browse files
README.md
CHANGED
@@ -0,0 +1,318 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
pipeline_tag: feature-extraction
|
3 |
+
library_name: "transformers.js"
|
4 |
+
language:
|
5 |
+
- en
|
6 |
+
license: mit
|
7 |
+
---
|
8 |
+
|
9 |
+
_Fork of https://huggingface.co/BAAI/bge-small-en with ONNX weights to be compatible with Transformers.js. See [JavaScript usage](#javascript)._
|
10 |
+
|
11 |
+
---
|
12 |
+
|
13 |
+
<h1 align="center">FlagEmbedding</h1>
|
14 |
+
|
15 |
+
<h4 align="center">
|
16 |
+
<p>
|
17 |
+
<a href=#model-list>Model List</a> |
|
18 |
+
<a href=#usage>Usage</a> |
|
19 |
+
<a href="#evaluation">Evaluation</a> |
|
20 |
+
<a href="#train">Train</a> |
|
21 |
+
<a href="#license">License</a>
|
22 |
+
<p>
|
23 |
+
</h4>
|
24 |
+
|
25 |
+
For more details please refer to our GitHub repo: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding).
|
26 |
+
|
27 |
+
[English](README.md) | [中文](https://github.com/FlagOpen/FlagEmbedding/blob/master/README_zh.md)
|
28 |
+
|
29 |
+
FlagEmbedding can map any text to a low-dimensional dense vector which can be used for tasks like retrieval, classification, clustering, or semantic search.
|
30 |
+
And it also can be used in vector databases for LLMs.
|
31 |
+
|
32 |
+
************* 🌟**Updates**🌟 *************
|
33 |
+
- 08/05/2023: Release base-scale and small-scale models, **best performance among the models of the same size 🤗**
|
34 |
+
- 08/02/2023: Release `bge-large-*`(short for BAAI General Embedding) Models, **rank 1st on MTEB and C-MTEB benchmark!** :tada: :tada:
|
35 |
+
- 08/01/2023: We release the [Chinese Massive Text Embedding Benchmark](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB) (**C-MTEB**), consisting of 31 test dataset.
|
36 |
+
|
37 |
+
|
38 |
+
## Model List
|
39 |
+
|
40 |
+
`bge` is short for `BAAI general embedding`.
|
41 |
+
|
42 |
+
| Model | Language | Description | query instruction for retrieval |
|
43 |
+
|:-------------------------------|:--------:| :--------:| :--------:|
|
44 |
+
| [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en) | English | :trophy: rank **1st** in [MTEB](https://huggingface.co/spaces/mteb/leaderboard) leaderboard | `Represent this sentence for searching relevant passages: ` |
|
45 |
+
| [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en) | English | rank **2nd** in [MTEB](https://huggingface.co/spaces/mteb/leaderboard) leaderboard | `Represent this sentence for searching relevant passages: ` |
|
46 |
+
| [BAAI/bge-small-en](https://huggingface.co/BAAI/bge-small-en) | English | a small-scale model but with competitive performance | `Represent this sentence for searching relevant passages: ` |
|
47 |
+
| [BAAI/bge-small-en](https://huggingface.co/BAAI/bge-small-en) | Chinese | :trophy: rank **1st** in [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB) benchmark | `为这个句子生成表示以用于检索相关文章:` |
|
48 |
+
| [BAAI/bge-small-en-noinstruct](https://huggingface.co/BAAI/bge-small-en-noinstruct) | Chinese | This model is trained without instruction, and rank **2nd** in [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB) benchmark | |
|
49 |
+
| [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | Chinese | a base-scale model but has similar ability with `bge-large-zh` | `为这个句子生成表示以用于检索相关文章:` |
|
50 |
+
| [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | Chinese | a small-scale model but with competitive performance | `为这个句子生成表示以用于检索相关文章:` |
|
51 |
+
|
52 |
+
|
53 |
+
|
54 |
+
## Usage
|
55 |
+
|
56 |
+
This model can be used with both [Python](#python) and [JavaScript](#javascript).
|
57 |
+
|
58 |
+
### Python
|
59 |
+
|
60 |
+
#### Use with [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md)
|
61 |
+
|
62 |
+
```
|
63 |
+
pip install -U FlagEmbedding
|
64 |
+
```
|
65 |
+
See [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md) for more methods to install FlagEmbedding.
|
66 |
+
|
67 |
+
```python
|
68 |
+
from FlagEmbedding import FlagModel
|
69 |
+
sentences = ["样例数据-1", "样例数据-2"]
|
70 |
+
model = FlagModel('Supabase/bge-small-en', query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:")
|
71 |
+
embeddings = model.encode(sentences)
|
72 |
+
print(embeddings)
|
73 |
+
|
74 |
+
# for retrieval task, please use encode_queries() which will automatically add the instruction to each query
|
75 |
+
# corpus in retrieval task can still use encode() or encode_corpus()
|
76 |
+
queries = ['query_1', 'query_2']
|
77 |
+
passages = ["样例段落-1", "样例段落-2"]
|
78 |
+
q_embeddings = model.encode_queries(queries)
|
79 |
+
p_embeddings = model.encode(passages)
|
80 |
+
scores = q_embeddings @ p_embeddings.T
|
81 |
+
```
|
82 |
+
The value of argument `query_instruction_for_retrieval` see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list).
|
83 |
+
|
84 |
+
FlagModel will use all available GPUs when encoding, please set `os.environ["CUDA_VISIBLE_DEVICES"]` to choose GPU.
|
85 |
+
|
86 |
+
#### Use with [sentence-transformers](https://www.sbert.net/)
|
87 |
+
|
88 |
+
Using this model also is easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
89 |
+
|
90 |
+
```
|
91 |
+
pip install -U sentence-transformers
|
92 |
+
```
|
93 |
+
```python
|
94 |
+
from sentence_transformers import SentenceTransformer
|
95 |
+
sentences = ["样例数据-1", "样例数据-2"]
|
96 |
+
model = SentenceTransformer('Supabase/bge-small-en')
|
97 |
+
embeddings = model.encode(sentences, normalize_embeddings=True)
|
98 |
+
print(embeddings)
|
99 |
+
```
|
100 |
+
For retrieval task,
|
101 |
+
each query should start with an instruction (instructions see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list)).
|
102 |
+
```python
|
103 |
+
from sentence_transformers import SentenceTransformer
|
104 |
+
queries = ["手机开不了机怎么办?"]
|
105 |
+
passages = ["样例段落-1", "样例段落-2"]
|
106 |
+
instruction = "为这个句子生成表示以用于检索相关文章:"
|
107 |
+
|
108 |
+
model = SentenceTransformer('Supabase/bge-small-en')
|
109 |
+
q_embeddings = model.encode([instruction+q for q in queries], normalize_embeddings=True)
|
110 |
+
p_embeddings = model.encode(passages, normalize_embeddings=True)
|
111 |
+
scores = q_embeddings @ p_embeddings.T
|
112 |
+
```
|
113 |
+
|
114 |
+
#### Use with [Transformers](https://huggingface.co/docs/transformers/index) and [PyTorch](https://pytorch.org/docs/stable/index.html)
|
115 |
+
|
116 |
+
With transformers package, you can use the model like this: First, you pass your input through the transformer model, then you select the last hidden state of first token (i.e., [CLS]) as the sentence embedding.
|
117 |
+
|
118 |
+
```python
|
119 |
+
from transformers import AutoTokenizer, AutoModel
|
120 |
+
import torch
|
121 |
+
# Sentences we want sentence embeddings for
|
122 |
+
sentences = ["样例数据-1", "样例数据-2"]
|
123 |
+
|
124 |
+
# Load model from HuggingFace Hub
|
125 |
+
tokenizer = AutoTokenizer.from_pretrained('Supabase/bge-small-en')
|
126 |
+
model = AutoModel.from_pretrained('Supabase/bge-small-en')
|
127 |
+
|
128 |
+
# Tokenize sentences
|
129 |
+
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
130 |
+
# for retrieval task, add an instruction to query
|
131 |
+
# encoded_input = tokenizer([instruction + q for q in queries], padding=True, truncation=True, return_tensors='pt')
|
132 |
+
|
133 |
+
# Compute token embeddings
|
134 |
+
with torch.no_grad():
|
135 |
+
model_output = model(**encoded_input)
|
136 |
+
# Perform pooling. In this case, cls pooling.
|
137 |
+
sentence_embeddings = model_output[0][:, 0]
|
138 |
+
# normalize embeddings
|
139 |
+
sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, dim=1)
|
140 |
+
print("Sentence embeddings:", sentence_embeddings)
|
141 |
+
```
|
142 |
+
|
143 |
+
### JavaScript
|
144 |
+
|
145 |
+
This model can be used with JavaScript via [Transformers.js](https://huggingface.co/docs/transformers.js/index).
|
146 |
+
|
147 |
+
#### Use with [Deno](https://deno.land/manual/introduction) or [Supabase Edge Functions](https://supabase.com/docs/guides/functions)
|
148 |
+
|
149 |
+
```ts
|
150 |
+
import { serve } from 'https://deno.land/std@0.168.0/http/server.ts'
|
151 |
+
import { env, pipeline } from 'https://cdn.jsdelivr.net/npm/@xenova/transformers@2.5.0'
|
152 |
+
// Configuration for Deno runtime
|
153 |
+
env.useBrowserCache = false;
|
154 |
+
env.allowLocalModels = false;
|
155 |
+
const pipe = await pipeline(
|
156 |
+
'feature-extraction',
|
157 |
+
'Supabase/bge-small-en',
|
158 |
+
);
|
159 |
+
serve(async (req) => {
|
160 |
+
// Extract input string from JSON body
|
161 |
+
const { input } = await req.json();
|
162 |
+
// Generate the embedding from the user input
|
163 |
+
const output = await pipe(input, {
|
164 |
+
pooling: 'mean',
|
165 |
+
normalize: true,
|
166 |
+
});
|
167 |
+
// Extract the embedding output
|
168 |
+
const embedding = Array.from(output.data);
|
169 |
+
// Return the embedding
|
170 |
+
return new Response(
|
171 |
+
JSON.stringify({ embedding }),
|
172 |
+
{ headers: { 'Content-Type': 'application/json' } }
|
173 |
+
);
|
174 |
+
});
|
175 |
+
```
|
176 |
+
|
177 |
+
#### Use within the browser ([JavaScript Modules](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules))
|
178 |
+
|
179 |
+
```html
|
180 |
+
<script type="module">
|
181 |
+
import { pipeline } from 'https://cdn.jsdelivr.net/npm/@xenova/transformers@2.5.0';
|
182 |
+
const pipe = await pipeline(
|
183 |
+
'feature-extraction',
|
184 |
+
'Supabase/bge-small-en',
|
185 |
+
);
|
186 |
+
// Generate the embedding from text
|
187 |
+
const output = await pipe('Hello world', {
|
188 |
+
pooling: 'mean',
|
189 |
+
normalize: true,
|
190 |
+
});
|
191 |
+
// Extract the embedding output
|
192 |
+
const embedding = Array.from(output.data);
|
193 |
+
console.log(embedding);
|
194 |
+
</script>
|
195 |
+
```
|
196 |
+
|
197 |
+
#### Use within [Node.js](https://nodejs.org/en/docs) or a web bundler ([Webpack](https://webpack.js.org/concepts/), etc)
|
198 |
+
|
199 |
+
```js
|
200 |
+
import { pipeline } from '@xenova/transformers';
|
201 |
+
const pipe = await pipeline(
|
202 |
+
'feature-extraction',
|
203 |
+
'Supabase/bge-small-en',
|
204 |
+
);
|
205 |
+
// Generate the embedding from text
|
206 |
+
const output = await pipe('Hello world', {
|
207 |
+
pooling: 'mean',
|
208 |
+
normalize: true,
|
209 |
+
});
|
210 |
+
// Extract the embedding output
|
211 |
+
const embedding = Array.from(output.data);
|
212 |
+
console.log(embedding);
|
213 |
+
```
|
214 |
+
|
215 |
+
## Evaluation
|
216 |
+
`baai-general-embedding` models achieve **state-of-the-art performance on both MTEB and C-MTEB leaderboard!**
|
217 |
+
More details and evaluation tools see our [scripts](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md).
|
218 |
+
|
219 |
+
- **MTEB**:
|
220 |
+
|
221 |
+
| Model Name | Dimension | Sequence Length | Average (56) | Retrieval (15) |Clustering (11) | Pair Classification (3) | Reranking (4) | STS (10) | Summarization (1) | Classification (12) |
|
222 |
+
|:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
|
223 |
+
| [**bge-large-en**](https://huggingface.co/BAAI/bge-large-en) | 1024 | 512 | **63.98** | **53.9** | **46.98** | 85.8 | **59.48** | 81.56 | 32.06 | **76.21** |
|
224 |
+
| [**bge-base-en**](https://huggingface.co/BAAI/bge-base-en) | 768 | 512 | 63.36 | 53.0 | 46.32 | 85.86 | 58.7 | 81.84 | 29.27 | 75.27 |
|
225 |
+
| [gte-large](https://huggingface.co/thenlper/gte-large) | 1024 | 512 | 63.13 | 52.22 | 46.84 | 85.00 | 59.13 | 83.35 | 31.66 | 73.33 |
|
226 |
+
| [gte-base](https://huggingface.co/thenlper/gte-base) | 768 | 512 | 62.39 | 51.14 | 46.2 | 84.57 | 58.61 | 82.3 | 31.17 | 73.01 |
|
227 |
+
| [e5-large-v2](https://huggingface.co/intfloat/e5-large-v2) | 1024| 512 | 62.25 | 50.56 | 44.49 | 86.03 | 56.61 | 82.05 | 30.19 | 75.24 |
|
228 |
+
| [**bge-small-en**](https://huggingface.co/BAAI/bge-small-en) | 384 | 512 | 62.11 | 51.82 | 44.31 | 83.78 | 57.97 | 80.72 | 30.53 | 74.37 |
|
229 |
+
| [instructor-xl](https://huggingface.co/hkunlp/instructor-xl) | 768 | 512 | 61.79 | 49.26 | 44.74 | 86.62 | 57.29 | 83.06 | 32.32 | 61.79 |
|
230 |
+
| [e5-base-v2](https://huggingface.co/intfloat/e5-base-v2) | 768 | 512 | 61.5 | 50.29 | 43.80 | 85.73 | 55.91 | 81.05 | 30.28 | 73.84 |
|
231 |
+
| [bge-small-en](https://huggingface.co/thenlper/bge-small-en) | 384 | 512 | 61.36 | 49.46 | 44.89 | 83.54 | 57.7 | 82.07 | 30.42 | 72.31 |
|
232 |
+
| [text-embedding-ada-002](https://platform.openai.com/docs/guides/embeddings) | 1536 | 8192 | 60.99 | 49.25 | 45.9 | 84.89 | 56.32 | 80.97 | 30.8 | 70.93 |
|
233 |
+
| [e5-small-v2](https://huggingface.co/intfloat/e5-base-v2) | 384 | 512 | 59.93 | 49.04 | 39.92 | 84.67 | 54.32 | 80.39 | 31.16 | 72.94 |
|
234 |
+
| [sentence-t5-xxl](https://huggingface.co/sentence-transformers/sentence-t5-xxl) | 768 | 512 | 59.51 | 42.24 | 43.72 | 85.06 | 56.42 | 82.63 | 30.08 | 73.42 |
|
235 |
+
| [all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) | 768 | 514 | 57.78 | 43.81 | 43.69 | 83.04 | 59.36 | 80.28 | 27.49 | 65.07 |
|
236 |
+
| [sgpt-bloom-7b1-msmarco](https://huggingface.co/bigscience/sgpt-bloom-7b1-msmarco) | 4096 | 2048 | 57.59 | 48.22 | 38.93 | 81.9 | 55.65 | 77.74 | 33.6 | 66.19 |
|
237 |
+
| [all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2) | 384 | 512 | 56.53 | 42.69 | 41.81 | 82.41 | 58.44 | 79.8 | 27.9 | 63.21 |
|
238 |
+
| [all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) | 384 | 512 | 56.26 | 41.95 | 42.35 | 82.37 | 58.04 | 78.9 | 30.81 | 63.05 |
|
239 |
+
| [contriever-base-msmarco](https://huggingface.co/nthakur/contriever-base-msmarco) | 768 | 512 | 56.00 | 41.88 | 41.1 | 82.54 | 53.14 | 76.51 | 30.36 | 66.68 |
|
240 |
+
| [sentence-t5-base](https://huggingface.co/sentence-transformers/sentence-t5-base) | 768 | 512 | 55.27 | 33.63 | 40.21 | 85.18 | 53.09 | 81.14 | 31.39 | 69.81 |
|
241 |
+
|
242 |
+
|
243 |
+
|
244 |
+
- **C-MTEB**:
|
245 |
+
We create a benchmark C-MTEB for Chinese text embedding which consists of 31 datasets from 6 tasks.
|
246 |
+
Please refer to [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md) for a detailed introduction.
|
247 |
+
|
248 |
+
| Model | Embedding dimension | Avg | Retrieval | STS | PairClassification | Classification | Reranking | Clustering |
|
249 |
+
|:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|
|
250 |
+
| [**bge-large-zh**](https://huggingface.co/BAAI/bge-small-en) | 1024 | **64.20** | **71.53** | **53.23** | **78.94** | 72.26 | **65.11** | 48.39 |
|
251 |
+
| [**bge-large-zh-noinstruct**](https://huggingface.co/BAAI/bge-small-en-noinstruct) | 1024 | 63.53 | 70.55 | 50.98 | 76.77 | **72.49** | 64.91 | **50.01** |
|
252 |
+
| [**BAAI/bge-base-zh**](https://huggingface.co/BAAI/bge-base-zh) | 768 | 62.96 | 69.53 | 52.05 | 77.5 | 70.98 | 64.91 | 47.63 |
|
253 |
+
| [**BAAI/bge-small-zh**](https://huggingface.co/BAAI/bge-small-zh) | 512 | 58.27 | 63.07 | 46.87 | 70.35 | 67.78 | 61.48 | 45.09 |
|
254 |
+
| [m3e-base](https://huggingface.co/moka-ai/m3e-base) | 768 | 57.10 |56.91 | 48.15 | 63.99 | 70.28 | 59.34 | 47.68 |
|
255 |
+
| [m3e-large](https://huggingface.co/moka-ai/m3e-large) | 1024 | 57.05 |54.75 | 48.64 | 64.3 | 71.22 | 59.66 | 48.88 |
|
256 |
+
| [text-embedding-ada-002(OpenAI)](https://platform.openai.com/docs/guides/embeddings/what-are-embeddings) | 1536 | 53.02 | 52.0 | 40.61 | 69.56 | 67.38 | 54.28 | 45.68 |
|
257 |
+
| [luotuo](https://huggingface.co/silk-road/luotuo-bert-medium) | 1024 | 49.37 | 44.4 | 39.41 | 66.62 | 65.29 | 49.25 | 44.39 |
|
258 |
+
| [text2vec](https://huggingface.co/shibing624/text2vec-base-chinese) | 768 | 47.63 | 38.79 | 41.71 | 67.41 | 65.18 | 49.45 | 37.66 |
|
259 |
+
| [text2vec-large](https://huggingface.co/GanymedeNil/text2vec-large-chinese) | 1024 | 47.36 | 41.94 | 41.98 | 70.86 | 63.42 | 49.16 | 30.02 |
|
260 |
+
|
261 |
+
|
262 |
+
|
263 |
+
## Train
|
264 |
+
This section will introduce the way we used to train the general embedding.
|
265 |
+
The training scripts are in [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md),
|
266 |
+
and we provide some examples to do [pre-train](https://github.com/FlagOpen/FlagEmbedding/blob/master/examples/pretrain/README.md) and [fine-tune](https://github.com/FlagOpen/FlagEmbedding/blob/master/examples/finetune/README.md).
|
267 |
+
|
268 |
+
|
269 |
+
**1. RetroMAE Pre-train**
|
270 |
+
We pre-train the model following the method [retromae](https://github.com/staoxiao/RetroMAE),
|
271 |
+
which shows promising improvement in retrieval task ([paper](https://aclanthology.org/2022.emnlp-main.35.pdf)).
|
272 |
+
The pre-training was conducted on 24 A100(40G) GPUs with a batch size of 720.
|
273 |
+
In retromae, the mask ratio of encoder and decoder are 0.3, and 0.5 respectively.
|
274 |
+
We used the AdamW optimizer and the learning rate is 2e-5.
|
275 |
+
|
276 |
+
**Pre-training data**:
|
277 |
+
- English:
|
278 |
+
- [Pile](https://pile.eleuther.ai/)
|
279 |
+
- [wikipedia](https://huggingface.co/datasets/wikipedia)
|
280 |
+
- [msmarco](https://huggingface.co/datasets/Tevatron/msmarco-passage-corpus)
|
281 |
+
- Chinese:
|
282 |
+
- Subset of [wudao](https://github.com/BAAI-WuDao/Data)
|
283 |
+
- [baidu-baike](https://baike.baidu.com/)
|
284 |
+
|
285 |
+
|
286 |
+
**2. Finetune**
|
287 |
+
We fine-tune the model using a contrastive objective.
|
288 |
+
The format of input data is a triple`(query, positive, negative)`.
|
289 |
+
Besides the negative in the triple, we also adopt in-batch negatives strategy.
|
290 |
+
We employ the cross-device negatives sharing method to share negatives among different GPUs,
|
291 |
+
which can dramatically **increase the number of negatives**.
|
292 |
+
|
293 |
+
We trained our model on 48 A100(40G) GPUs with a large batch size of 32,768 (so there are **65,535** negatives for each query in a batch).
|
294 |
+
We used the AdamW optimizer and the learning rate is 1e-5.
|
295 |
+
The temperature for contrastive loss is 0.01.
|
296 |
+
|
297 |
+
For the version with `*-instrcution`, we add instruction to the query for retrieval task in the training.
|
298 |
+
For english, the instruction is `Represent this sentence for searching relevant passages: `;
|
299 |
+
For chinese, the instruction is `为这个句子生成表示以用于检索相关文章:`.
|
300 |
+
In the evaluation, the instruction should be added for sentence to passages retrieval task, not be added for other tasks.
|
301 |
+
|
302 |
+
|
303 |
+
The finetune script is accessible in this repository: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md).
|
304 |
+
You can easily finetune your model with it.
|
305 |
+
|
306 |
+
**Training data**:
|
307 |
+
|
308 |
+
- For English, we collect 230M text pairs from [wikipedia](https://huggingface.co/datasets/wikipedia), [cc-net](https://github.com/facebookresearch/cc_net), and so on.
|
309 |
+
|
310 |
+
- For chinese, we collect 120M text pairs from [wudao](https://github.com/BAAI-WuDao/Data), [simclue](https://github.com/CLUEbenchmark/SimCLUE) and so on.
|
311 |
+
|
312 |
+
**The data collection is to be released in the future.**
|
313 |
+
|
314 |
+
We will continually update the embedding models and training codes,
|
315 |
+
hoping to promote the development of the embedding model community.
|
316 |
+
|
317 |
+
## License
|
318 |
+
FlagEmbedding is licensed under [MIT License](https://github.com/FlagOpen/FlagEmbedding/blob/master/LICENSE). The released models can be used for commercial purposes free of charge.
|