File size: 2,836 Bytes
cd71544 7ee1267 cd71544 7ee1267 cd71544 7ee1267 cd71544 853c418 cd71544 7152465 bec7fe5 6e2c902 bec7fe5 cd71544 853c418 cd71544 7ee1267 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
- emotion_classfication
metrics:
- accuracy
- f1
model-index:
- name: distilbert-base-uncased-finetuned-emotion-classification-10_epochs
results: []
datasets:
- dair-ai/emotion
language:
- en
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-emotion-classification-10_epochs
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1464
- Accuracy: 0.9375
- F1 score: 0.9376
## Model description
This model is fine-tuned on the 'emotion' dataset to classify text into six emotion categories: sadness, joy, love, anger, fear, and surprise.
## Use the Model
```python
from transformers import pipeline
import pandas as pd
emt_clf = pipeline("text-classification", model="Swoodplays/emotion-classification")
text = "I saw a movie today and it was really good."
preds = emt_clf(text, return_all_scores=True)
labels = ['sadness', 'joy', 'love', 'anger', 'fear', 'surprise']
print(preds)
preds_df = pd.DataFrame(preds[0])
plt.bar(labels, 100 * preds_df["score"])
plt.title(f'"{text}"')
plt.xlabel("Classfied emotions")
plt.ylabel("Class probability (%)")
plt.show()
```
## Training and evaluation data
dair-ai/emotion
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 score |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|
| No log | 1.0 | 125 | 0.4449 | 0.873 | 0.8654 |
| No log | 2.0 | 250 | 0.2166 | 0.9265 | 0.9270 |
| No log | 3.0 | 375 | 0.1726 | 0.933 | 0.9339 |
| No log | 4.0 | 500 | 0.1552 | 0.9385 | 0.9386 |
| No log | 5.0 | 625 | 0.1439 | 0.938 | 0.9383 |
| No log | 6.0 | 750 | 0.1435 | 0.937 | 0.9370 |
| No log | 7.0 | 875 | 0.1481 | 0.9355 | 0.9356 |
| No log | 8.0 | 1000 | 0.1402 | 0.935 | 0.9352 |
| No log | 9.0 | 1125 | 0.1491 | 0.9355 | 0.9355 |
| No log | 10.0 | 1250 | 0.1464 | 0.9375 | 0.9376 |
### Framework versions
- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1 |