--- library_name: transformers tags: - medical license: apache-2.0 datasets: - SylvanL/Traditional-Chinese-Medicine-Dataset-SFT language: - zh base_model: - SylvanL/ChatTCM-7B-Pretrain --- ### 第二个epoch的模型&测试评估结果正在路上... 在2张V800-80G上, 基于SylvanL/ChatTCM-7B-Pretrain, 在llamafactory框架上, 使用SylvanL/Traditional-Chinese-Medicine-Dataset-SFT进行了1个epoch的全参数量有监督微调(full Supervised Fine-tuning). 可选Instruction: ``` 将输入的文言文/古文翻译成现代文。 基于输入的患者医案记录,直接给出你的证型诊断,无需给出原因。 基于输入的患者医案记录,直接给出你的疾病诊断,无需给出原因。 基于输入的患者医案记录,直接给出你认为的方剂中药组成。 基于输入的患者医案记录,直接给出你认为的【治疗方案】{可多选}∈["中药", "成药", "方剂"],和【诊断】{可多选}∈["证型", "治法", "西医诊断", "中医诊断"]: ``` ``` epoch 1: "epoch": 0.9999178959467966, "num_input_tokens_seen": 1649269888, "total_flos": 3298213988794368.0, "train_loss": 1.0691444667014194, "train_runtime": 587389.2072, "train_samples_per_second": 3.483, "train_steps_per_second": 0.016 ``` ``` llamafactory-cli train \ --stage sft \ --do_train True \ --model_name_or_path {SylvanL/ChatTCM-7B-Pretrain} \ --preprocessing_num_workers 16 \ --finetuning_type full \ --template default \ --flash_attn auto \ --dataset_dir {dataset_dir} \ --dataset SFT_medicalKnowledge_source1_548404,SFT_medicalKnowledge_source2_99334,SFT_medicalKnowledge_source3_556540,SFT_nlpDiseaseDiagnosed_61486,SFT_nlpSyndromeDiagnosed_48665,SFT_structGeneral_310860,SFT_structPrescription_92896,SFT_external_traditionalTrans_7304,{BAAI/COIG},{m-a-p/COIG-CQIA} \ --cutoff_len 1024 \ --learning_rate 5e-05 \ --num_train_epochs 1.0 \ --max_samples 1000000 \ --per_device_train_batch_size 28 \ --gradient_accumulation_steps 4 \ --lr_scheduler_type cosine \ --max_grad_norm 1.0 \ --logging_steps 1 \ --save_steps 1000 \ --warmup_steps 0 \ --optim adamw_torch \ --packing False \ --report_to none \ --output_dir {output_dir} \ --bf16 True \ --plot_loss True \ --ddp_timeout 180000000 \ --include_num_input_tokens_seen True \ --deepspeed cache/ds_z3_offload_config.json ```