LongCite-glm4-9b / vllm_inference.py
davidlvxin's picture
Upload folder using huggingface_hub
7c20485 verified
import json
from vllm import LLM, SamplingParams
from nltk.tokenize import PunktSentenceTokenizer
import re
import torch
class LongCiteModel(LLM):
@torch.inference_mode()
def chat(self, tokenizer, query: str, history=None, role="user",
max_new_tokens=None, top_p=0.7, temperature=0.95):
if history is None:
history = []
inputs = tokenizer.build_chat_input(query, history=history, role=role)
eos_token_id = [tokenizer.eos_token_id, tokenizer.get_command("<|user|>"), tokenizer.get_command("<|observation|>")]
generation_params = SamplingParams(
temperature=temperature,
top_p=top_p,
max_tokens=max_new_tokens,
stop_token_ids=eos_token_id,
)
input_ids = inputs.input_ids[0].tolist()
outputs = self.generate(sampling_params=generation_params, prompt_token_ids=[input_ids])
response = tokenizer.decode(outputs[0].outputs[0].token_ids[:-1])
history.append({"role": role, "content": query})
return response, history
def query_longcite(self, context, query, tokenizer, max_input_length=128000, max_new_tokens=1024, temperature=0.95):
def text_split_by_punctuation(original_text, return_dict=False):
# text = re.sub(r'([a-z])\.([A-Z])', r'\1. \2', original_text) # separate period without space
text = original_text
custom_sent_tokenizer = PunktSentenceTokenizer(text)
punctuations = r"([。;!?])" # For Chinese support
separated = custom_sent_tokenizer.tokenize(text)
separated = sum([re.split(punctuations, s) for s in separated], [])
# Put the punctuations back to the sentence
for i in range(1, len(separated)):
if re.match(punctuations, separated[i]):
separated[i-1] += separated[i]
separated[i] = ''
separated = [s for s in separated if s != ""]
if len(separated) == 1:
separated = original_text.split('\n\n')
separated = [s.strip() for s in separated if s.strip() != ""]
if not return_dict:
return separated
else:
pos = 0
res = []
for i, sent in enumerate(separated):
st = original_text.find(sent, pos)
assert st != -1, sent
ed = st + len(sent)
res.append(
{
'c_idx': i,
'content': sent,
'start_idx': st,
'end_idx': ed,
}
)
pos = ed
return res
def get_prompt(context, question):
sents = text_split_by_punctuation(context, return_dict=True)
splited_context = ""
for i, s in enumerate(sents):
st, ed = s['start_idx'], s['end_idx']
assert s['content'] == context[st:ed], s
ed = sents[i+1]['start_idx'] if i < len(sents)-1 else len(context)
sents[i] = {
'content': context[st:ed],
'start': st,
'end': ed,
'c_idx': s['c_idx'],
}
splited_context += f"<C{i}>"+context[st:ed]
prompt = '''Please answer the user's question based on the following document. When a sentence S in your response uses information from some chunks in the document (i.e., <C{s1}>-<C_{e1}>, <C{s2}>-<C{e2}>, ...), please append these chunk numbers to S in the format "<statement>{S}<cite>[{s1}-{e1}][{s2}-{e2}]...</cite></statement>". You must answer in the same language as the user's question.\n\n[Document Start]\n%s\n[Document End]\n\n%s''' % (splited_context, question)
return prompt, sents, splited_context
def get_citations(statement, sents):
c_texts = re.findall(r'<cite>(.*?)</cite>', statement, re.DOTALL)
spans = sum([re.findall(r"\[([0-9]+\-[0-9]+)\]", c_text, re.DOTALL) for c_text in c_texts], [])
statement = re.sub(r'<cite>(.*?)</cite>', '', statement, flags=re.DOTALL)
merged_citations = []
for i, s in enumerate(spans):
try:
st, ed = [int(x) for x in s.split('-')]
if st > len(sents) - 1 or ed < st:
continue
st, ed = max(0, st), min(ed, len(sents)-1)
assert st <= ed, str(c_texts) + '\t' + str(len(sents))
if len(merged_citations) > 0 and st == merged_citations[-1]['end_sentence_idx'] + 1:
merged_citations[-1].update({
"end_sentence_idx": ed,
'end_char_idx': sents[ed]['end'],
'cite': ''.join([x['content'] for x in sents[merged_citations[-1]['start_sentence_idx']:ed+1]]),
})
else:
merged_citations.append({
"start_sentence_idx": st,
"end_sentence_idx": ed,
"start_char_idx": sents[st]['start'],
'end_char_idx': sents[ed]['end'],
'cite': ''.join([x['content'] for x in sents[st:ed+1]]),
})
except:
print(c_texts, len(sents), statement)
raise
return statement, merged_citations[:3]
def postprocess(answer, sents, splited_context):
res = []
pos = 0
new_answer = ""
while True:
st = answer.find("<statement>", pos)
if st == -1:
st = len(answer)
ed = answer.find("</statement>", st)
statement = answer[pos:st]
if len(statement.strip()) > 5:
res.append({
"statement": statement,
"citation": []
})
new_answer += f"<statement>{statement}<cite></cite></statement>"
else:
res.append({
"statement": statement,
"citation": None,
})
new_answer += statement
if ed == -1:
break
statement = answer[st+len("<statement>"):ed]
if len(statement.strip()) > 0:
statement, citations = get_citations(statement, sents)
res.append({
"statement": statement,
"citation": citations
})
c_str = ''.join(['[{}-{}]'.format(c['start_sentence_idx'], c['end_sentence_idx']) for c in citations])
new_answer += f"<statement>{statement}<cite>{c_str}</cite></statement>"
else:
res.append({
"statement": statement,
"citation": None,
})
new_answer += statement
pos = ed + len("</statement>")
return {
"answer": new_answer.strip(),
"statements_with_citations": [x for x in res if x['citation'] is not None],
"splited_context": splited_context.strip(),
"all_statements": res,
}
def truncate_from_middle(prompt, max_input_length=None, tokenizer=None):
if max_input_length is None:
return prompt
else:
assert tokenizer is not None
tokenized_prompt = tokenizer.encode(prompt, add_special_tokens=False)
if len(tokenized_prompt) > max_input_length:
half = int(max_input_length/2)
prompt = tokenizer.decode(tokenized_prompt[:half], skip_special_tokens=True)+tokenizer.decode(tokenized_prompt[-half:], skip_special_tokens=True)
return prompt
prompt, sents, splited_context = get_prompt(context, query)
prompt = truncate_from_middle(prompt, max_input_length, tokenizer)
output, _ = self.chat(tokenizer, prompt, history=[], max_new_tokens=max_new_tokens, temperature=temperature)
result = postprocess(output, sents, splited_context)
return result
if __name__ == "__main__":
model_path = "THUDM/LongCite-glm4-9b"
model = LongCiteModel(
model= model_path,
dtype=torch.bfloat16,
trust_remote_code=True,
tensor_parallel_size=1,
max_model_len=131072,
gpu_memory_utilization=1,
)
tokenizer = model.get_tokenizer()
context = '''
W. Russell Todd, 94, United States Army general (b. 1928). February 13. Tim Aymar, 59, heavy metal singer (Pharaoh) (b. 1963). Marshall \"Eddie\" Conway, 76, Black Panther Party leader (b. 1946). Roger Bonk, 78, football player (North Dakota Fighting Sioux, Winnipeg Blue Bombers) (b. 1944). Conrad Dobler, 72, football player (St. Louis Cardinals, New Orleans Saints, Buffalo Bills) (b. 1950). Brian DuBois, 55, baseball player (Detroit Tigers) (b. 1967). Robert Geddes, 99, architect, dean of the Princeton University School of Architecture (1965–1982) (b. 1923). Tom Luddy, 79, film producer (Barfly, The Secret Garden), co-founder of the Telluride Film Festival (b. 1943). David Singmaster, 84, mathematician (b. 1938).
'''
query = "What was Robert Geddes' profession?"
result = model.query_longcite(context, query, tokenizer=tokenizer, max_input_length=128000, max_new_tokens=1024)
print("Answer:")
print(result['answer'])
print('\n')
print("Statement with citations:" )
print(json.dumps(result['statements_with_citations'], indent=2, ensure_ascii=False))
print('\n')
print("Context (divided into sentences):")
print(result['splited_context'])