Add p-tuning v2
Browse files- configuration_chatglm.py +4 -0
- modeling_chatglm.py +73 -2
configuration_chatglm.py
CHANGED
@@ -70,6 +70,8 @@ class ChatGLMConfig(PretrainedConfig):
|
|
70 |
max_sequence_length=2048,
|
71 |
inner_hidden_size=16384,
|
72 |
position_encoding_2d=True,
|
|
|
|
|
73 |
**kwargs
|
74 |
):
|
75 |
self.num_layers = num_layers
|
@@ -84,6 +86,8 @@ class ChatGLMConfig(PretrainedConfig):
|
|
84 |
self.eos_token_id = eos_token_id
|
85 |
self.pad_token_id = pad_token_id
|
86 |
self.position_encoding_2d = position_encoding_2d
|
|
|
|
|
87 |
super().__init__(
|
88 |
pad_token_id=pad_token_id,
|
89 |
bos_token_id=bos_token_id,
|
|
|
70 |
max_sequence_length=2048,
|
71 |
inner_hidden_size=16384,
|
72 |
position_encoding_2d=True,
|
73 |
+
pre_seq_len=None,
|
74 |
+
prefix_projection=False,
|
75 |
**kwargs
|
76 |
):
|
77 |
self.num_layers = num_layers
|
|
|
86 |
self.eos_token_id = eos_token_id
|
87 |
self.pad_token_id = pad_token_id
|
88 |
self.position_encoding_2d = position_encoding_2d
|
89 |
+
self.pre_seq_len = pre_seq_len
|
90 |
+
self.prefix_projection = prefix_projection
|
91 |
super().__init__(
|
92 |
pad_token_id=pad_token_id,
|
93 |
bos_token_id=bos_token_id,
|
modeling_chatglm.py
CHANGED
@@ -129,6 +129,35 @@ def load_tf_weights_in_chatglm_6b(model, config, tf_checkpoint_path):
|
|
129 |
return model
|
130 |
|
131 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
@torch.jit.script
|
133 |
def gelu_impl(x):
|
134 |
"""OpenAI's gelu implementation."""
|
@@ -719,6 +748,8 @@ class ChatGLMModel(ChatGLMPreTrainedModel):
|
|
719 |
self.inner_hidden_size = config.inner_hidden_size
|
720 |
self.hidden_size_per_attention_head = self.hidden_size // self.num_attention_heads
|
721 |
self.position_encoding_2d = config.position_encoding_2d
|
|
|
|
|
722 |
|
723 |
self.word_embeddings = skip_init(
|
724 |
torch.nn.Embedding,
|
@@ -747,12 +778,41 @@ class ChatGLMModel(ChatGLMPreTrainedModel):
|
|
747 |
# Final layer norm before output.
|
748 |
self.final_layernorm = LayerNorm(self.hidden_size, eps=self.layernorm_epsilon)
|
749 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
750 |
def get_input_embeddings(self):
|
751 |
return self.word_embeddings
|
752 |
|
753 |
def set_input_embeddings(self, new_embeddings: torch.Tensor):
|
754 |
self.word_embeddings = new_embeddings
|
755 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
756 |
@staticmethod
|
757 |
def get_masks(seq, device):
|
758 |
context_length = seq.index(150004) + 1
|
@@ -822,7 +882,10 @@ class ChatGLMModel(ChatGLMPreTrainedModel):
|
|
822 |
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
823 |
|
824 |
if past_key_values is None:
|
825 |
-
|
|
|
|
|
|
|
826 |
|
827 |
MASK, gMASK = 150000, 150001
|
828 |
mask_token = MASK if MASK in input_ids else gMASK
|
@@ -837,6 +900,11 @@ class ChatGLMModel(ChatGLMPreTrainedModel):
|
|
837 |
device=input_ids.device
|
838 |
)
|
839 |
|
|
|
|
|
|
|
|
|
|
|
840 |
if position_ids is None:
|
841 |
position_ids = self.get_position_ids(
|
842 |
seq=seq,
|
@@ -1125,18 +1193,21 @@ class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
|
|
1125 |
if "eos_token_id" not in kwargs:
|
1126 |
kwargs["eos_token_id"] = eos
|
1127 |
|
|
|
|
|
1128 |
stop = False
|
1129 |
|
1130 |
return_seqs = []
|
1131 |
|
1132 |
while True:
|
1133 |
output_ids = super().generate(**kwargs)
|
1134 |
-
|
1135 |
return_seqs = []
|
1136 |
max_length = 0
|
1137 |
|
1138 |
for i in range(output_ids.shape[0]):
|
1139 |
output_seq = output_ids[i].tolist()
|
|
|
|
|
1140 |
mask_token = MASK if MASK in output_seq else gMASK
|
1141 |
mask_position = output_seq.index(mask_token)
|
1142 |
bos_position = output_seq.index(bos)
|
|
|
129 |
return model
|
130 |
|
131 |
|
132 |
+
class PrefixEncoder(torch.nn.Module):
|
133 |
+
r'''
|
134 |
+
The torch.nn model to encode the prefix
|
135 |
+
Input shape: (batch-size, prefix-length)
|
136 |
+
Output shape: (batch-size, prefix-length, 2*layers*hidden)
|
137 |
+
'''
|
138 |
+
def __init__(self, config):
|
139 |
+
super().__init__()
|
140 |
+
self.prefix_projection = config.prefix_projection
|
141 |
+
if self.prefix_projection:
|
142 |
+
# Use a two-layer MLP to encode the prefix
|
143 |
+
self.embedding = torch.nn.Embedding(config.pre_seq_len, config.hidden_size)
|
144 |
+
self.trans = torch.nn.Sequential(
|
145 |
+
torch.nn.Linear(config.hidden_size, config.hidden_size),
|
146 |
+
torch.nn.Tanh(),
|
147 |
+
torch.nn.Linear(config.hidden_size, config.num_layers * config.hidden_size * 2)
|
148 |
+
)
|
149 |
+
else:
|
150 |
+
self.embedding = torch.nn.Embedding(config.pre_seq_len, config.num_layers * config.hidden_size * 2)
|
151 |
+
|
152 |
+
def forward(self, prefix: torch.Tensor):
|
153 |
+
if self.prefix_projection:
|
154 |
+
prefix_tokens = self.embedding(prefix)
|
155 |
+
past_key_values = self.trans(prefix_tokens)
|
156 |
+
else:
|
157 |
+
past_key_values = self.embedding(prefix)
|
158 |
+
return past_key_values
|
159 |
+
|
160 |
+
|
161 |
@torch.jit.script
|
162 |
def gelu_impl(x):
|
163 |
"""OpenAI's gelu implementation."""
|
|
|
748 |
self.inner_hidden_size = config.inner_hidden_size
|
749 |
self.hidden_size_per_attention_head = self.hidden_size // self.num_attention_heads
|
750 |
self.position_encoding_2d = config.position_encoding_2d
|
751 |
+
self.pre_seq_len = config.pre_seq_len
|
752 |
+
self.prefix_projection = config.prefix_projection
|
753 |
|
754 |
self.word_embeddings = skip_init(
|
755 |
torch.nn.Embedding,
|
|
|
778 |
# Final layer norm before output.
|
779 |
self.final_layernorm = LayerNorm(self.hidden_size, eps=self.layernorm_epsilon)
|
780 |
|
781 |
+
if self.pre_seq_len is not None:
|
782 |
+
for param in self.parameters():
|
783 |
+
param.requires_grad = False
|
784 |
+
self.prefix_tokens = torch.arange(self.pre_seq_len).long()
|
785 |
+
self.prefix_encoder = PrefixEncoder(config)
|
786 |
+
self.dropout = torch.nn.Dropout(0.1)
|
787 |
+
|
788 |
+
# total_params = sum(p.numel() for p in self.parameters())
|
789 |
+
# trainable_params = sum(p.numel() for p in self.parameters() if p.requires_grad)
|
790 |
+
# print("Using p-tuning v2: # trainable_params = {} / {}".format(trainable_params, total_params))
|
791 |
+
|
792 |
def get_input_embeddings(self):
|
793 |
return self.word_embeddings
|
794 |
|
795 |
def set_input_embeddings(self, new_embeddings: torch.Tensor):
|
796 |
self.word_embeddings = new_embeddings
|
797 |
|
798 |
+
def get_prompt(self, batch_size, device):
|
799 |
+
prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(device)
|
800 |
+
past_key_values = self.prefix_encoder(prefix_tokens).half()
|
801 |
+
past_key_values = past_key_values.view(
|
802 |
+
batch_size,
|
803 |
+
self.pre_seq_len,
|
804 |
+
self.num_layers * 2,
|
805 |
+
self.num_attention_heads,
|
806 |
+
self.hidden_size // self.num_attention_heads
|
807 |
+
)
|
808 |
+
#seq_len, b, nh, hidden_size
|
809 |
+
past_key_values = self.dropout(past_key_values)
|
810 |
+
past_key_values = past_key_values.permute([2, 1, 0, 3, 4]).split(2)
|
811 |
+
past_key_values = [(v[0], v[1]) for v in past_key_values]
|
812 |
+
# past_key_values = past_key_values.permute([2, 1, 0, 3, 4]).split(self.num_layers)
|
813 |
+
# past_key_values = [(v1,v2) for v1, v2 in zip(past_key_values[0], past_key_values[1])]
|
814 |
+
return past_key_values
|
815 |
+
|
816 |
@staticmethod
|
817 |
def get_masks(seq, device):
|
818 |
context_length = seq.index(150004) + 1
|
|
|
882 |
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
883 |
|
884 |
if past_key_values is None:
|
885 |
+
if self.pre_seq_len is not None:
|
886 |
+
past_key_values = self.get_prompt(batch_size=input_ids.shape[0], device=input_ids.device)
|
887 |
+
else:
|
888 |
+
past_key_values = tuple([None] * len(self.layers))
|
889 |
|
890 |
MASK, gMASK = 150000, 150001
|
891 |
mask_token = MASK if MASK in input_ids else gMASK
|
|
|
900 |
device=input_ids.device
|
901 |
)
|
902 |
|
903 |
+
if self.pre_seq_len is not None:
|
904 |
+
prefix_attention_mask = torch.ones(1, 1, len(seq), self.pre_seq_len).to(attention_mask.device)
|
905 |
+
prefix_attention_mask = (prefix_attention_mask < 0.5).bool()
|
906 |
+
attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=3)
|
907 |
+
|
908 |
if position_ids is None:
|
909 |
position_ids = self.get_position_ids(
|
910 |
seq=seq,
|
|
|
1193 |
if "eos_token_id" not in kwargs:
|
1194 |
kwargs["eos_token_id"] = eos
|
1195 |
|
1196 |
+
truncate = kwargs.pop("truncate") if "truncate" in kwargs else False
|
1197 |
+
|
1198 |
stop = False
|
1199 |
|
1200 |
return_seqs = []
|
1201 |
|
1202 |
while True:
|
1203 |
output_ids = super().generate(**kwargs)
|
|
|
1204 |
return_seqs = []
|
1205 |
max_length = 0
|
1206 |
|
1207 |
for i in range(output_ids.shape[0]):
|
1208 |
output_seq = output_ids[i].tolist()
|
1209 |
+
if truncate:
|
1210 |
+
output_seq = output_seq[len(kwargs["input_ids"][i]) - 2:]
|
1211 |
mask_token = MASK if MASK in output_seq else gMASK
|
1212 |
mask_position = output_seq.index(mask_token)
|
1213 |
bos_position = output_seq.index(bos)
|