Ubuntu commited on
Commit
0fe7ab5
β€’
1 Parent(s): 1e1d266
Files changed (4) hide show
  1. .mdl +0 -0
  2. .msc +0 -0
  3. .mv +0 -1
  4. README.md +170 -0
.mdl DELETED
Binary file (54 Bytes)
 
.msc DELETED
Binary file (1.7 kB)
 
.mv DELETED
@@ -1 +0,0 @@
1
- Revision:master,CreatedAt:1715952141
 
 
README.md ADDED
@@ -0,0 +1,170 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ license_name: cogvlm2
4
+ license_link: >-
5
+
6
+ language:
7
+ - en
8
+ pipeline_tag: text-generation
9
+ tags:
10
+ - chat
11
+ - cogvlm2
12
+
13
+ inference: false
14
+ ---
15
+
16
+ # CogVLM2
17
+
18
+ <div align="center">
19
+ <img src=https://github.com/THUDM/CogVLM2/blob/main/resources/logo.svg width="40%"/>
20
+ </div>
21
+ <p align="center">
22
+ πŸ‘‹ Join us on <a href="https://github.com/THUDM/CogVLM2/blob/main/resources/WECHAT.md" target="_blank">WeChat</a>
23
+ </p>
24
+ <p align="center">
25
+ πŸ“Experience the larger-scale CogVLM model on the <a href="https://open.bigmodel.cn/dev/api#super-humanoid">ZhipuAI Open Platform</a>.
26
+ </p>
27
+
28
+
29
+ ## Model introduction
30
+
31
+ We launch a new generation of **CogVLM2** series of models and open source two models built with [Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct). Compared with the previous generation of CogVLM open source models, the CogVLM2 series of open source models have the following improvements:
32
+
33
+ 1. Significant improvements in many benchmarks such as `TextVQA`, `DocVQA`.
34
+ 2. Support **8K** content length.
35
+ 3. Support image resolution up to **1344 * 1344**.
36
+ 4. Provide an open source model version that supports both **Chinese and English**.
37
+
38
+ You can see the details of the CogVLM2 family of open source models in the table below:
39
+
40
+ | Model name | cogvlm2-llama3-chat-19B | cogvlm2-llama3-chinese-chat-19B |
41
+ |------------------|-------------------------------------|-------------------------------------|
42
+ | Base Model | Meta-Llama-3-8B-Instruct | Meta-Llama-3-8B-Instruct |
43
+ | Language | English | Chinese, English |
44
+ | Model size | 19B | 19B |
45
+ | Task | Image understanding, dialogue model | Image understanding, dialogue model |
46
+ | Text length | 8K | 8K |
47
+ | Image resolution | 1344 * 1344 | 1344 * 1344 |
48
+
49
+ ## Benchmark
50
+
51
+ Our open source models have achieved good results in many lists compared to the previous generation of CogVLM open source models. Its excellent performance can compete with some non-open source models, as shown in the table below:
52
+
53
+ | Model | Open Source | LLM Size | TextVQA | DocVQA | ChartQA | OCRbench | MMMU | MMVet | MMBench |
54
+ |--------------------------------|-------------|----------|----------|----------|----------|----------|----------|----------|----------|
55
+ | LLaVA-1.5 | βœ… | 13B | 61.3 | - | - | 337 | 37.0 | 35.4 | 67.7 |
56
+ | Mini-Gemini | βœ… | 34B | 74.1 | - | - | - | 48.0 | 59.3 | 80.6 |
57
+ | LLaVA-NeXT-LLaMA3 | βœ… | 8B | - | 78.2 | 69.5 | - | 41.7 | - | 72.1 |
58
+ | LLaVA-NeXT-110B | βœ… | 110B | - | 85.7 | 79.7 | - | 49.1 | - | 80.5 |
59
+ | InternVL-1.5 | βœ… | 20B | 80.6 | 90.9 | **83.8** | 720 | 46.8 | 55.4 | **82.3** |
60
+ | QwenVL-Plus | ❌ | - | 78.9 | 91.4 | 78.1 | 726 | 51.4 | 55.7 | 67.0 |
61
+ | Claude3-Opus | ❌ | - | - | 89.3 | 80.8 | 694 | **59.4** | 51.7 | 63.3 |
62
+ | Gemini Pro 1.5 | ❌ | - | 73.5 | 86.5 | 81.3 | - | 58.5 | - | - |
63
+ | GPT-4V | ❌ | - | 78.0 | 88.4 | 78.5 | 656 | 56.8 | **67.7** | 75.0 |
64
+ | CogVLM1.1 (Ours) | βœ… | 7B | 69.7 | - | 68.3 | 590 | 37.3 | 52.0 | 65.8 |
65
+ | CogVLM2-LLaMA3 (Ours) | βœ… | 8B | 84.2 | **92.3** | 81.0 | 756 | 44.3 | 60.4 | 80.5 |
66
+ | CogVLM2-LLaMA3-Chinese (Ours) | βœ… | 8B | **85.0** | 88.4 | 74.7 | **780** | 42.8 | 60.5 | 78.9 |
67
+
68
+ All reviews were obtained without using any external OCR tools ("pixel only").
69
+ ## Quick Start
70
+
71
+ here is a simple example of how to use the model to chat with the CogVLM2 model.
72
+ ```python
73
+ import torch
74
+ from PIL import Image
75
+ from transformers import AutoModelForCausalLM, AutoTokenizer
76
+
77
+ MODEL_PATH = "THUDM/cogvlm2-llama3-chat-19B"
78
+ DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
79
+ TORCH_TYPE = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.get_device_capability()[0] >= 8 else torch.float16
80
+
81
+ tokenizer = AutoTokenizer.from_pretrained(
82
+ MODEL_PATH,
83
+ trust_remote_code=True
84
+ )
85
+ model = AutoModelForCausalLM.from_pretrained(
86
+ MODEL_PATH,
87
+ torch_dtype=TORCH_TYPE,
88
+ trust_remote_code=True,
89
+ ).to(DEVICE).eval()
90
+
91
+ text_only_template = "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {} ASSISTANT:"
92
+
93
+ while True:
94
+ image_path = input("image path >>>>> ")
95
+ if image_path == '':
96
+ print('You did not enter image path, the following will be a plain text conversation.')
97
+ image = None
98
+ text_only_first_query = True
99
+ else:
100
+ image = Image.open(image_path).convert('RGB')
101
+
102
+ history = []
103
+
104
+ while True:
105
+ query = input("Human:")
106
+ if query == "clear":
107
+ break
108
+
109
+ if image is None:
110
+ if text_only_first_query:
111
+ query = text_only_template.format(query)
112
+ text_only_first_query = False
113
+ else:
114
+ old_prompt = ''
115
+ for _, (old_query, response) in enumerate(history):
116
+ old_prompt += old_query + " " + response + "\n"
117
+ query = old_prompt + "USER: {} ASSISTANT:".format(query)
118
+ if image is None:
119
+ input_by_model = model.build_conversation_input_ids(
120
+ tokenizer,
121
+ query=query,
122
+ history=history,
123
+ template_version='chat'
124
+ )
125
+ else:
126
+ input_by_model = model.build_conversation_input_ids(
127
+ tokenizer,
128
+ query=query,
129
+ history=history,
130
+ images=[image],
131
+ template_version='chat'
132
+ )
133
+ inputs = {
134
+ 'input_ids': input_by_model['input_ids'].unsqueeze(0).to(DEVICE),
135
+ 'token_type_ids': input_by_model['token_type_ids'].unsqueeze(0).to(DEVICE),
136
+ 'attention_mask': input_by_model['attention_mask'].unsqueeze(0).to(DEVICE),
137
+ 'images': [[input_by_model['images'][0].to(DEVICE).to(TORCH_TYPE)]] if image is not None else None,
138
+ }
139
+ gen_kwargs = {
140
+ "max_new_tokens": 2048,
141
+ "pad_token_id": 128002,
142
+ }
143
+ with torch.no_grad():
144
+ outputs = model.generate(**inputs, **gen_kwargs)
145
+ outputs = outputs[:, inputs['input_ids'].shape[1]:]
146
+ response = tokenizer.decode(outputs[0])
147
+ response = response.split("<|end_of_text|>")[0]
148
+ print("\nCogVLM2:", response)
149
+ history.append((query, response))
150
+ ```
151
+
152
+
153
+ ## License
154
+
155
+ This model is released under the CogVLM2 [LICENSE](LICENSE). For models built with Meta Llama 3, please also adhere to the [LLAMA3_LICENSE](LLAMA3_LICENSE).
156
+
157
+ ## Citation
158
+
159
+ If you find our work helpful, please consider citing the following papers
160
+
161
+ ```
162
+ @misc{wang2023cogvlm,
163
+ title={CogVLM: Visual Expert for Pretrained Language Models},
164
+ author={Weihan Wang and Qingsong Lv and Wenmeng Yu and Wenyi Hong and Ji Qi and Yan Wang and Junhui Ji and Zhuoyi Yang and Lei Zhao and Xixuan Song and Jiazheng Xu and Bin Xu and Juanzi Li and Yuxiao Dong and Ming Ding and Jie Tang},
165
+ year={2023},
166
+ eprint={2311.03079},
167
+ archivePrefix={arXiv},
168
+ primaryClass={cs.CV}
169
+ }
170
+ ```