--- language: - fr license: apache-2.0 tags: - generated_from_trainer base_model: facebook/wav2vec2-large-xlsr-53 datasets: - mozilla-foundation/common_voice_17_0 metrics: - wer model-index: - name: acoustic_model0_cv_17_fr_XLSR-53 results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Common Voice 17 type: mozilla-foundation/common_voice_17_0 config: fr split: test args: fr metrics: - type: wer value: 0.46428149722517414 name: Wer --- # acoustic_model0_cv_17_fr_XLSR-53 This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the Common Voice 17 dataset. It achieves the following results on the evaluation set: - Loss: 0.5171 - Wer: 0.4643 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 3.0475 | 2.084 | 400 | 2.9894 | 0.9949 | | 1.2413 | 5.0767 | 800 | 0.6745 | 0.5958 | | 0.5812 | 8.0693 | 1200 | 0.5171 | 0.4643 | ### Framework versions - Transformers 4.40.0 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1