andersonbcdefg commited on
Commit
efd6a5d
1 Parent(s): e0c32b8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2598 -3
README.md CHANGED
@@ -5,14 +5,2609 @@ tags:
5
  - feature-extraction
6
  - sentence-similarity
7
  - transformers
8
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
  ---
10
 
11
- # {MODEL_NAME}
12
 
13
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.
14
 
15
- <!--- Describe your model here -->
16
 
17
  ## Usage (Sentence-Transformers)
18
 
 
5
  - feature-extraction
6
  - sentence-similarity
7
  - transformers
8
+ - mteb
9
+ model-index:
10
+ - name: bge_micro
11
+ results:
12
+ - task:
13
+ type: Classification
14
+ dataset:
15
+ type: mteb/amazon_counterfactual
16
+ name: MTEB AmazonCounterfactualClassification (en)
17
+ config: en
18
+ split: test
19
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
20
+ metrics:
21
+ - type: accuracy
22
+ value: 67.76119402985074
23
+ - type: ap
24
+ value: 29.637849284211114
25
+ - type: f1
26
+ value: 61.31181187111905
27
+ - task:
28
+ type: Classification
29
+ dataset:
30
+ type: mteb/amazon_polarity
31
+ name: MTEB AmazonPolarityClassification
32
+ config: default
33
+ split: test
34
+ revision: e2d317d38cd51312af73b3d32a06d1a08b442046
35
+ metrics:
36
+ - type: accuracy
37
+ value: 79.7547
38
+ - type: ap
39
+ value: 74.21401629809145
40
+ - type: f1
41
+ value: 79.65319615433783
42
+ - task:
43
+ type: Classification
44
+ dataset:
45
+ type: mteb/amazon_reviews_multi
46
+ name: MTEB AmazonReviewsClassification (en)
47
+ config: en
48
+ split: test
49
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
50
+ metrics:
51
+ - type: accuracy
52
+ value: 37.452000000000005
53
+ - type: f1
54
+ value: 37.0245198854966
55
+ - task:
56
+ type: Retrieval
57
+ dataset:
58
+ type: arguana
59
+ name: MTEB ArguAna
60
+ config: default
61
+ split: test
62
+ revision: None
63
+ metrics:
64
+ - type: map_at_1
65
+ value: 31.152
66
+ - type: map_at_10
67
+ value: 46.702
68
+ - type: map_at_100
69
+ value: 47.563
70
+ - type: map_at_1000
71
+ value: 47.567
72
+ - type: map_at_3
73
+ value: 42.058
74
+ - type: map_at_5
75
+ value: 44.608
76
+ - type: mrr_at_1
77
+ value: 32.006
78
+ - type: mrr_at_10
79
+ value: 47.064
80
+ - type: mrr_at_100
81
+ value: 47.910000000000004
82
+ - type: mrr_at_1000
83
+ value: 47.915
84
+ - type: mrr_at_3
85
+ value: 42.283
86
+ - type: mrr_at_5
87
+ value: 44.968
88
+ - type: ndcg_at_1
89
+ value: 31.152
90
+ - type: ndcg_at_10
91
+ value: 55.308
92
+ - type: ndcg_at_100
93
+ value: 58.965
94
+ - type: ndcg_at_1000
95
+ value: 59.067
96
+ - type: ndcg_at_3
97
+ value: 45.698
98
+ - type: ndcg_at_5
99
+ value: 50.296
100
+ - type: precision_at_1
101
+ value: 31.152
102
+ - type: precision_at_10
103
+ value: 8.279
104
+ - type: precision_at_100
105
+ value: 0.987
106
+ - type: precision_at_1000
107
+ value: 0.1
108
+ - type: precision_at_3
109
+ value: 18.753
110
+ - type: precision_at_5
111
+ value: 13.485
112
+ - type: recall_at_1
113
+ value: 31.152
114
+ - type: recall_at_10
115
+ value: 82.788
116
+ - type: recall_at_100
117
+ value: 98.72
118
+ - type: recall_at_1000
119
+ value: 99.502
120
+ - type: recall_at_3
121
+ value: 56.259
122
+ - type: recall_at_5
123
+ value: 67.425
124
+ - task:
125
+ type: Clustering
126
+ dataset:
127
+ type: mteb/arxiv-clustering-p2p
128
+ name: MTEB ArxivClusteringP2P
129
+ config: default
130
+ split: test
131
+ revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
132
+ metrics:
133
+ - type: v_measure
134
+ value: 44.52692241938116
135
+ - task:
136
+ type: Clustering
137
+ dataset:
138
+ type: mteb/arxiv-clustering-s2s
139
+ name: MTEB ArxivClusteringS2S
140
+ config: default
141
+ split: test
142
+ revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
143
+ metrics:
144
+ - type: v_measure
145
+ value: 33.245710292773595
146
+ - task:
147
+ type: Reranking
148
+ dataset:
149
+ type: mteb/askubuntudupquestions-reranking
150
+ name: MTEB AskUbuntuDupQuestions
151
+ config: default
152
+ split: test
153
+ revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
154
+ metrics:
155
+ - type: map
156
+ value: 58.08493637155168
157
+ - type: mrr
158
+ value: 71.94378490084861
159
+ - task:
160
+ type: STS
161
+ dataset:
162
+ type: mteb/biosses-sts
163
+ name: MTEB BIOSSES
164
+ config: default
165
+ split: test
166
+ revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
167
+ metrics:
168
+ - type: cos_sim_pearson
169
+ value: 84.1602804378326
170
+ - type: cos_sim_spearman
171
+ value: 82.92478106365587
172
+ - type: euclidean_pearson
173
+ value: 82.27930167277077
174
+ - type: euclidean_spearman
175
+ value: 82.18560759458093
176
+ - type: manhattan_pearson
177
+ value: 82.34277425888187
178
+ - type: manhattan_spearman
179
+ value: 81.72776583704467
180
+ - task:
181
+ type: Classification
182
+ dataset:
183
+ type: mteb/banking77
184
+ name: MTEB Banking77Classification
185
+ config: default
186
+ split: test
187
+ revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
188
+ metrics:
189
+ - type: accuracy
190
+ value: 81.17207792207792
191
+ - type: f1
192
+ value: 81.09893836310513
193
+ - task:
194
+ type: Clustering
195
+ dataset:
196
+ type: mteb/biorxiv-clustering-p2p
197
+ name: MTEB BiorxivClusteringP2P
198
+ config: default
199
+ split: test
200
+ revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
201
+ metrics:
202
+ - type: v_measure
203
+ value: 36.109308463095516
204
+ - task:
205
+ type: Clustering
206
+ dataset:
207
+ type: mteb/biorxiv-clustering-s2s
208
+ name: MTEB BiorxivClusteringS2S
209
+ config: default
210
+ split: test
211
+ revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
212
+ metrics:
213
+ - type: v_measure
214
+ value: 28.06048212317168
215
+ - task:
216
+ type: Retrieval
217
+ dataset:
218
+ type: BeIR/cqadupstack
219
+ name: MTEB CQADupstackAndroidRetrieval
220
+ config: default
221
+ split: test
222
+ revision: None
223
+ metrics:
224
+ - type: map_at_1
225
+ value: 28.233999999999998
226
+ - type: map_at_10
227
+ value: 38.092999999999996
228
+ - type: map_at_100
229
+ value: 39.473
230
+ - type: map_at_1000
231
+ value: 39.614
232
+ - type: map_at_3
233
+ value: 34.839
234
+ - type: map_at_5
235
+ value: 36.523
236
+ - type: mrr_at_1
237
+ value: 35.193000000000005
238
+ - type: mrr_at_10
239
+ value: 44.089
240
+ - type: mrr_at_100
241
+ value: 44.927
242
+ - type: mrr_at_1000
243
+ value: 44.988
244
+ - type: mrr_at_3
245
+ value: 41.559000000000005
246
+ - type: mrr_at_5
247
+ value: 43.162
248
+ - type: ndcg_at_1
249
+ value: 35.193000000000005
250
+ - type: ndcg_at_10
251
+ value: 44.04
252
+ - type: ndcg_at_100
253
+ value: 49.262
254
+ - type: ndcg_at_1000
255
+ value: 51.847
256
+ - type: ndcg_at_3
257
+ value: 39.248
258
+ - type: ndcg_at_5
259
+ value: 41.298
260
+ - type: precision_at_1
261
+ value: 35.193000000000005
262
+ - type: precision_at_10
263
+ value: 8.555
264
+ - type: precision_at_100
265
+ value: 1.3820000000000001
266
+ - type: precision_at_1000
267
+ value: 0.189
268
+ - type: precision_at_3
269
+ value: 19.123
270
+ - type: precision_at_5
271
+ value: 13.648
272
+ - type: recall_at_1
273
+ value: 28.233999999999998
274
+ - type: recall_at_10
275
+ value: 55.094
276
+ - type: recall_at_100
277
+ value: 76.85300000000001
278
+ - type: recall_at_1000
279
+ value: 94.163
280
+ - type: recall_at_3
281
+ value: 40.782000000000004
282
+ - type: recall_at_5
283
+ value: 46.796
284
+ - task:
285
+ type: Retrieval
286
+ dataset:
287
+ type: BeIR/cqadupstack
288
+ name: MTEB CQADupstackEnglishRetrieval
289
+ config: default
290
+ split: test
291
+ revision: None
292
+ metrics:
293
+ - type: map_at_1
294
+ value: 21.538
295
+ - type: map_at_10
296
+ value: 28.449
297
+ - type: map_at_100
298
+ value: 29.471000000000004
299
+ - type: map_at_1000
300
+ value: 29.599999999999998
301
+ - type: map_at_3
302
+ value: 26.371
303
+ - type: map_at_5
304
+ value: 27.58
305
+ - type: mrr_at_1
306
+ value: 26.815
307
+ - type: mrr_at_10
308
+ value: 33.331
309
+ - type: mrr_at_100
310
+ value: 34.114
311
+ - type: mrr_at_1000
312
+ value: 34.182
313
+ - type: mrr_at_3
314
+ value: 31.561
315
+ - type: mrr_at_5
316
+ value: 32.608
317
+ - type: ndcg_at_1
318
+ value: 26.815
319
+ - type: ndcg_at_10
320
+ value: 32.67
321
+ - type: ndcg_at_100
322
+ value: 37.039
323
+ - type: ndcg_at_1000
324
+ value: 39.769
325
+ - type: ndcg_at_3
326
+ value: 29.523
327
+ - type: ndcg_at_5
328
+ value: 31.048
329
+ - type: precision_at_1
330
+ value: 26.815
331
+ - type: precision_at_10
332
+ value: 5.955
333
+ - type: precision_at_100
334
+ value: 1.02
335
+ - type: precision_at_1000
336
+ value: 0.152
337
+ - type: precision_at_3
338
+ value: 14.033999999999999
339
+ - type: precision_at_5
340
+ value: 9.911
341
+ - type: recall_at_1
342
+ value: 21.538
343
+ - type: recall_at_10
344
+ value: 40.186
345
+ - type: recall_at_100
346
+ value: 58.948
347
+ - type: recall_at_1000
348
+ value: 77.158
349
+ - type: recall_at_3
350
+ value: 30.951
351
+ - type: recall_at_5
352
+ value: 35.276
353
+ - task:
354
+ type: Retrieval
355
+ dataset:
356
+ type: BeIR/cqadupstack
357
+ name: MTEB CQADupstackGamingRetrieval
358
+ config: default
359
+ split: test
360
+ revision: None
361
+ metrics:
362
+ - type: map_at_1
363
+ value: 35.211999999999996
364
+ - type: map_at_10
365
+ value: 46.562
366
+ - type: map_at_100
367
+ value: 47.579
368
+ - type: map_at_1000
369
+ value: 47.646
370
+ - type: map_at_3
371
+ value: 43.485
372
+ - type: map_at_5
373
+ value: 45.206
374
+ - type: mrr_at_1
375
+ value: 40.627
376
+ - type: mrr_at_10
377
+ value: 49.928
378
+ - type: mrr_at_100
379
+ value: 50.647
380
+ - type: mrr_at_1000
381
+ value: 50.685
382
+ - type: mrr_at_3
383
+ value: 47.513
384
+ - type: mrr_at_5
385
+ value: 48.958
386
+ - type: ndcg_at_1
387
+ value: 40.627
388
+ - type: ndcg_at_10
389
+ value: 52.217
390
+ - type: ndcg_at_100
391
+ value: 56.423
392
+ - type: ndcg_at_1000
393
+ value: 57.821999999999996
394
+ - type: ndcg_at_3
395
+ value: 46.949000000000005
396
+ - type: ndcg_at_5
397
+ value: 49.534
398
+ - type: precision_at_1
399
+ value: 40.627
400
+ - type: precision_at_10
401
+ value: 8.476
402
+ - type: precision_at_100
403
+ value: 1.15
404
+ - type: precision_at_1000
405
+ value: 0.132
406
+ - type: precision_at_3
407
+ value: 21.003
408
+ - type: precision_at_5
409
+ value: 14.469999999999999
410
+ - type: recall_at_1
411
+ value: 35.211999999999996
412
+ - type: recall_at_10
413
+ value: 65.692
414
+ - type: recall_at_100
415
+ value: 84.011
416
+ - type: recall_at_1000
417
+ value: 94.03099999999999
418
+ - type: recall_at_3
419
+ value: 51.404
420
+ - type: recall_at_5
421
+ value: 57.882
422
+ - task:
423
+ type: Retrieval
424
+ dataset:
425
+ type: BeIR/cqadupstack
426
+ name: MTEB CQADupstackGisRetrieval
427
+ config: default
428
+ split: test
429
+ revision: None
430
+ metrics:
431
+ - type: map_at_1
432
+ value: 22.09
433
+ - type: map_at_10
434
+ value: 29.516
435
+ - type: map_at_100
436
+ value: 30.462
437
+ - type: map_at_1000
438
+ value: 30.56
439
+ - type: map_at_3
440
+ value: 26.945000000000004
441
+ - type: map_at_5
442
+ value: 28.421999999999997
443
+ - type: mrr_at_1
444
+ value: 23.616
445
+ - type: mrr_at_10
446
+ value: 31.221
447
+ - type: mrr_at_100
448
+ value: 32.057
449
+ - type: mrr_at_1000
450
+ value: 32.137
451
+ - type: mrr_at_3
452
+ value: 28.738000000000003
453
+ - type: mrr_at_5
454
+ value: 30.156
455
+ - type: ndcg_at_1
456
+ value: 23.616
457
+ - type: ndcg_at_10
458
+ value: 33.97
459
+ - type: ndcg_at_100
460
+ value: 38.806000000000004
461
+ - type: ndcg_at_1000
462
+ value: 41.393
463
+ - type: ndcg_at_3
464
+ value: 28.908
465
+ - type: ndcg_at_5
466
+ value: 31.433
467
+ - type: precision_at_1
468
+ value: 23.616
469
+ - type: precision_at_10
470
+ value: 5.299
471
+ - type: precision_at_100
472
+ value: 0.812
473
+ - type: precision_at_1000
474
+ value: 0.107
475
+ - type: precision_at_3
476
+ value: 12.015
477
+ - type: precision_at_5
478
+ value: 8.701
479
+ - type: recall_at_1
480
+ value: 22.09
481
+ - type: recall_at_10
482
+ value: 46.089999999999996
483
+ - type: recall_at_100
484
+ value: 68.729
485
+ - type: recall_at_1000
486
+ value: 88.435
487
+ - type: recall_at_3
488
+ value: 32.584999999999994
489
+ - type: recall_at_5
490
+ value: 38.550000000000004
491
+ - task:
492
+ type: Retrieval
493
+ dataset:
494
+ type: BeIR/cqadupstack
495
+ name: MTEB CQADupstackMathematicaRetrieval
496
+ config: default
497
+ split: test
498
+ revision: None
499
+ metrics:
500
+ - type: map_at_1
501
+ value: 15.469
502
+ - type: map_at_10
503
+ value: 22.436
504
+ - type: map_at_100
505
+ value: 23.465
506
+ - type: map_at_1000
507
+ value: 23.608999999999998
508
+ - type: map_at_3
509
+ value: 19.716
510
+ - type: map_at_5
511
+ value: 21.182000000000002
512
+ - type: mrr_at_1
513
+ value: 18.905
514
+ - type: mrr_at_10
515
+ value: 26.55
516
+ - type: mrr_at_100
517
+ value: 27.46
518
+ - type: mrr_at_1000
519
+ value: 27.553
520
+ - type: mrr_at_3
521
+ value: 23.921999999999997
522
+ - type: mrr_at_5
523
+ value: 25.302999999999997
524
+ - type: ndcg_at_1
525
+ value: 18.905
526
+ - type: ndcg_at_10
527
+ value: 27.437
528
+ - type: ndcg_at_100
529
+ value: 32.555
530
+ - type: ndcg_at_1000
531
+ value: 35.885
532
+ - type: ndcg_at_3
533
+ value: 22.439
534
+ - type: ndcg_at_5
535
+ value: 24.666
536
+ - type: precision_at_1
537
+ value: 18.905
538
+ - type: precision_at_10
539
+ value: 5.2490000000000006
540
+ - type: precision_at_100
541
+ value: 0.889
542
+ - type: precision_at_1000
543
+ value: 0.131
544
+ - type: precision_at_3
545
+ value: 10.862
546
+ - type: precision_at_5
547
+ value: 8.085
548
+ - type: recall_at_1
549
+ value: 15.469
550
+ - type: recall_at_10
551
+ value: 38.706
552
+ - type: recall_at_100
553
+ value: 61.242
554
+ - type: recall_at_1000
555
+ value: 84.84
556
+ - type: recall_at_3
557
+ value: 24.973
558
+ - type: recall_at_5
559
+ value: 30.603
560
+ - task:
561
+ type: Retrieval
562
+ dataset:
563
+ type: BeIR/cqadupstack
564
+ name: MTEB CQADupstackPhysicsRetrieval
565
+ config: default
566
+ split: test
567
+ revision: None
568
+ metrics:
569
+ - type: map_at_1
570
+ value: 24.918000000000003
571
+ - type: map_at_10
572
+ value: 34.296
573
+ - type: map_at_100
574
+ value: 35.632000000000005
575
+ - type: map_at_1000
576
+ value: 35.748999999999995
577
+ - type: map_at_3
578
+ value: 31.304
579
+ - type: map_at_5
580
+ value: 33.166000000000004
581
+ - type: mrr_at_1
582
+ value: 30.703000000000003
583
+ - type: mrr_at_10
584
+ value: 39.655
585
+ - type: mrr_at_100
586
+ value: 40.569
587
+ - type: mrr_at_1000
588
+ value: 40.621
589
+ - type: mrr_at_3
590
+ value: 37.023
591
+ - type: mrr_at_5
592
+ value: 38.664
593
+ - type: ndcg_at_1
594
+ value: 30.703000000000003
595
+ - type: ndcg_at_10
596
+ value: 39.897
597
+ - type: ndcg_at_100
598
+ value: 45.777
599
+ - type: ndcg_at_1000
600
+ value: 48.082
601
+ - type: ndcg_at_3
602
+ value: 35.122
603
+ - type: ndcg_at_5
604
+ value: 37.691
605
+ - type: precision_at_1
606
+ value: 30.703000000000003
607
+ - type: precision_at_10
608
+ value: 7.305000000000001
609
+ - type: precision_at_100
610
+ value: 1.208
611
+ - type: precision_at_1000
612
+ value: 0.159
613
+ - type: precision_at_3
614
+ value: 16.811
615
+ - type: precision_at_5
616
+ value: 12.203999999999999
617
+ - type: recall_at_1
618
+ value: 24.918000000000003
619
+ - type: recall_at_10
620
+ value: 51.31
621
+ - type: recall_at_100
622
+ value: 76.534
623
+ - type: recall_at_1000
624
+ value: 91.911
625
+ - type: recall_at_3
626
+ value: 37.855
627
+ - type: recall_at_5
628
+ value: 44.493
629
+ - task:
630
+ type: Retrieval
631
+ dataset:
632
+ type: BeIR/cqadupstack
633
+ name: MTEB CQADupstackProgrammersRetrieval
634
+ config: default
635
+ split: test
636
+ revision: None
637
+ metrics:
638
+ - type: map_at_1
639
+ value: 22.416
640
+ - type: map_at_10
641
+ value: 30.474
642
+ - type: map_at_100
643
+ value: 31.759999999999998
644
+ - type: map_at_1000
645
+ value: 31.891000000000002
646
+ - type: map_at_3
647
+ value: 27.728
648
+ - type: map_at_5
649
+ value: 29.247
650
+ - type: mrr_at_1
651
+ value: 28.881
652
+ - type: mrr_at_10
653
+ value: 36.418
654
+ - type: mrr_at_100
655
+ value: 37.347
656
+ - type: mrr_at_1000
657
+ value: 37.415
658
+ - type: mrr_at_3
659
+ value: 33.942
660
+ - type: mrr_at_5
661
+ value: 35.386
662
+ - type: ndcg_at_1
663
+ value: 28.881
664
+ - type: ndcg_at_10
665
+ value: 35.812
666
+ - type: ndcg_at_100
667
+ value: 41.574
668
+ - type: ndcg_at_1000
669
+ value: 44.289
670
+ - type: ndcg_at_3
671
+ value: 31.239
672
+ - type: ndcg_at_5
673
+ value: 33.302
674
+ - type: precision_at_1
675
+ value: 28.881
676
+ - type: precision_at_10
677
+ value: 6.598
678
+ - type: precision_at_100
679
+ value: 1.1079999999999999
680
+ - type: precision_at_1000
681
+ value: 0.151
682
+ - type: precision_at_3
683
+ value: 14.954
684
+ - type: precision_at_5
685
+ value: 10.776
686
+ - type: recall_at_1
687
+ value: 22.416
688
+ - type: recall_at_10
689
+ value: 46.243
690
+ - type: recall_at_100
691
+ value: 71.352
692
+ - type: recall_at_1000
693
+ value: 90.034
694
+ - type: recall_at_3
695
+ value: 32.873000000000005
696
+ - type: recall_at_5
697
+ value: 38.632
698
+ - task:
699
+ type: Retrieval
700
+ dataset:
701
+ type: BeIR/cqadupstack
702
+ name: MTEB CQADupstackRetrieval
703
+ config: default
704
+ split: test
705
+ revision: None
706
+ metrics:
707
+ - type: map_at_1
708
+ value: 22.528166666666667
709
+ - type: map_at_10
710
+ value: 30.317833333333333
711
+ - type: map_at_100
712
+ value: 31.44108333333333
713
+ - type: map_at_1000
714
+ value: 31.566666666666666
715
+ - type: map_at_3
716
+ value: 27.84425
717
+ - type: map_at_5
718
+ value: 29.233333333333334
719
+ - type: mrr_at_1
720
+ value: 26.75733333333333
721
+ - type: mrr_at_10
722
+ value: 34.24425
723
+ - type: mrr_at_100
724
+ value: 35.11375
725
+ - type: mrr_at_1000
726
+ value: 35.184333333333335
727
+ - type: mrr_at_3
728
+ value: 32.01225
729
+ - type: mrr_at_5
730
+ value: 33.31225
731
+ - type: ndcg_at_1
732
+ value: 26.75733333333333
733
+ - type: ndcg_at_10
734
+ value: 35.072583333333334
735
+ - type: ndcg_at_100
736
+ value: 40.13358333333334
737
+ - type: ndcg_at_1000
738
+ value: 42.81825
739
+ - type: ndcg_at_3
740
+ value: 30.79275000000001
741
+ - type: ndcg_at_5
742
+ value: 32.822
743
+ - type: precision_at_1
744
+ value: 26.75733333333333
745
+ - type: precision_at_10
746
+ value: 6.128083333333334
747
+ - type: precision_at_100
748
+ value: 1.019
749
+ - type: precision_at_1000
750
+ value: 0.14391666666666664
751
+ - type: precision_at_3
752
+ value: 14.129916666666665
753
+ - type: precision_at_5
754
+ value: 10.087416666666668
755
+ - type: recall_at_1
756
+ value: 22.528166666666667
757
+ - type: recall_at_10
758
+ value: 45.38341666666667
759
+ - type: recall_at_100
760
+ value: 67.81791666666668
761
+ - type: recall_at_1000
762
+ value: 86.71716666666666
763
+ - type: recall_at_3
764
+ value: 33.38741666666667
765
+ - type: recall_at_5
766
+ value: 38.62041666666667
767
+ - task:
768
+ type: Retrieval
769
+ dataset:
770
+ type: BeIR/cqadupstack
771
+ name: MTEB CQADupstackStatsRetrieval
772
+ config: default
773
+ split: test
774
+ revision: None
775
+ metrics:
776
+ - type: map_at_1
777
+ value: 21.975
778
+ - type: map_at_10
779
+ value: 28.144999999999996
780
+ - type: map_at_100
781
+ value: 28.994999999999997
782
+ - type: map_at_1000
783
+ value: 29.086000000000002
784
+ - type: map_at_3
785
+ value: 25.968999999999998
786
+ - type: map_at_5
787
+ value: 27.321
788
+ - type: mrr_at_1
789
+ value: 25.0
790
+ - type: mrr_at_10
791
+ value: 30.822
792
+ - type: mrr_at_100
793
+ value: 31.647
794
+ - type: mrr_at_1000
795
+ value: 31.712
796
+ - type: mrr_at_3
797
+ value: 28.860000000000003
798
+ - type: mrr_at_5
799
+ value: 30.041
800
+ - type: ndcg_at_1
801
+ value: 25.0
802
+ - type: ndcg_at_10
803
+ value: 31.929999999999996
804
+ - type: ndcg_at_100
805
+ value: 36.258
806
+ - type: ndcg_at_1000
807
+ value: 38.682
808
+ - type: ndcg_at_3
809
+ value: 27.972
810
+ - type: ndcg_at_5
811
+ value: 30.089
812
+ - type: precision_at_1
813
+ value: 25.0
814
+ - type: precision_at_10
815
+ value: 4.923
816
+ - type: precision_at_100
817
+ value: 0.767
818
+ - type: precision_at_1000
819
+ value: 0.106
820
+ - type: precision_at_3
821
+ value: 11.860999999999999
822
+ - type: precision_at_5
823
+ value: 8.466
824
+ - type: recall_at_1
825
+ value: 21.975
826
+ - type: recall_at_10
827
+ value: 41.102
828
+ - type: recall_at_100
829
+ value: 60.866
830
+ - type: recall_at_1000
831
+ value: 78.781
832
+ - type: recall_at_3
833
+ value: 30.268
834
+ - type: recall_at_5
835
+ value: 35.552
836
+ - task:
837
+ type: Retrieval
838
+ dataset:
839
+ type: BeIR/cqadupstack
840
+ name: MTEB CQADupstackTexRetrieval
841
+ config: default
842
+ split: test
843
+ revision: None
844
+ metrics:
845
+ - type: map_at_1
846
+ value: 15.845999999999998
847
+ - type: map_at_10
848
+ value: 21.861
849
+ - type: map_at_100
850
+ value: 22.798
851
+ - type: map_at_1000
852
+ value: 22.925
853
+ - type: map_at_3
854
+ value: 19.922
855
+ - type: map_at_5
856
+ value: 21.054000000000002
857
+ - type: mrr_at_1
858
+ value: 19.098000000000003
859
+ - type: mrr_at_10
860
+ value: 25.397
861
+ - type: mrr_at_100
862
+ value: 26.246000000000002
863
+ - type: mrr_at_1000
864
+ value: 26.33
865
+ - type: mrr_at_3
866
+ value: 23.469
867
+ - type: mrr_at_5
868
+ value: 24.646
869
+ - type: ndcg_at_1
870
+ value: 19.098000000000003
871
+ - type: ndcg_at_10
872
+ value: 25.807999999999996
873
+ - type: ndcg_at_100
874
+ value: 30.445
875
+ - type: ndcg_at_1000
876
+ value: 33.666000000000004
877
+ - type: ndcg_at_3
878
+ value: 22.292
879
+ - type: ndcg_at_5
880
+ value: 24.075
881
+ - type: precision_at_1
882
+ value: 19.098000000000003
883
+ - type: precision_at_10
884
+ value: 4.58
885
+ - type: precision_at_100
886
+ value: 0.8099999999999999
887
+ - type: precision_at_1000
888
+ value: 0.126
889
+ - type: precision_at_3
890
+ value: 10.346
891
+ - type: precision_at_5
892
+ value: 7.542999999999999
893
+ - type: recall_at_1
894
+ value: 15.845999999999998
895
+ - type: recall_at_10
896
+ value: 34.172999999999995
897
+ - type: recall_at_100
898
+ value: 55.24099999999999
899
+ - type: recall_at_1000
900
+ value: 78.644
901
+ - type: recall_at_3
902
+ value: 24.401
903
+ - type: recall_at_5
904
+ value: 28.938000000000002
905
+ - task:
906
+ type: Retrieval
907
+ dataset:
908
+ type: BeIR/cqadupstack
909
+ name: MTEB CQADupstackUnixRetrieval
910
+ config: default
911
+ split: test
912
+ revision: None
913
+ metrics:
914
+ - type: map_at_1
915
+ value: 22.974
916
+ - type: map_at_10
917
+ value: 30.108
918
+ - type: map_at_100
919
+ value: 31.208000000000002
920
+ - type: map_at_1000
921
+ value: 31.330999999999996
922
+ - type: map_at_3
923
+ value: 27.889999999999997
924
+ - type: map_at_5
925
+ value: 29.023
926
+ - type: mrr_at_1
927
+ value: 26.493
928
+ - type: mrr_at_10
929
+ value: 33.726
930
+ - type: mrr_at_100
931
+ value: 34.622
932
+ - type: mrr_at_1000
933
+ value: 34.703
934
+ - type: mrr_at_3
935
+ value: 31.575999999999997
936
+ - type: mrr_at_5
937
+ value: 32.690999999999995
938
+ - type: ndcg_at_1
939
+ value: 26.493
940
+ - type: ndcg_at_10
941
+ value: 34.664
942
+ - type: ndcg_at_100
943
+ value: 39.725
944
+ - type: ndcg_at_1000
945
+ value: 42.648
946
+ - type: ndcg_at_3
947
+ value: 30.447999999999997
948
+ - type: ndcg_at_5
949
+ value: 32.145
950
+ - type: precision_at_1
951
+ value: 26.493
952
+ - type: precision_at_10
953
+ value: 5.7090000000000005
954
+ - type: precision_at_100
955
+ value: 0.9199999999999999
956
+ - type: precision_at_1000
957
+ value: 0.129
958
+ - type: precision_at_3
959
+ value: 13.464
960
+ - type: precision_at_5
961
+ value: 9.384
962
+ - type: recall_at_1
963
+ value: 22.974
964
+ - type: recall_at_10
965
+ value: 45.097
966
+ - type: recall_at_100
967
+ value: 66.908
968
+ - type: recall_at_1000
969
+ value: 87.495
970
+ - type: recall_at_3
971
+ value: 33.338
972
+ - type: recall_at_5
973
+ value: 37.499
974
+ - task:
975
+ type: Retrieval
976
+ dataset:
977
+ type: BeIR/cqadupstack
978
+ name: MTEB CQADupstackWebmastersRetrieval
979
+ config: default
980
+ split: test
981
+ revision: None
982
+ metrics:
983
+ - type: map_at_1
984
+ value: 22.408
985
+ - type: map_at_10
986
+ value: 29.580000000000002
987
+ - type: map_at_100
988
+ value: 31.145
989
+ - type: map_at_1000
990
+ value: 31.369000000000003
991
+ - type: map_at_3
992
+ value: 27.634999999999998
993
+ - type: map_at_5
994
+ value: 28.766000000000002
995
+ - type: mrr_at_1
996
+ value: 27.272999999999996
997
+ - type: mrr_at_10
998
+ value: 33.93
999
+ - type: mrr_at_100
1000
+ value: 34.963
1001
+ - type: mrr_at_1000
1002
+ value: 35.031
1003
+ - type: mrr_at_3
1004
+ value: 32.016
1005
+ - type: mrr_at_5
1006
+ value: 33.221000000000004
1007
+ - type: ndcg_at_1
1008
+ value: 27.272999999999996
1009
+ - type: ndcg_at_10
1010
+ value: 33.993
1011
+ - type: ndcg_at_100
1012
+ value: 40.333999999999996
1013
+ - type: ndcg_at_1000
1014
+ value: 43.361
1015
+ - type: ndcg_at_3
1016
+ value: 30.918
1017
+ - type: ndcg_at_5
1018
+ value: 32.552
1019
+ - type: precision_at_1
1020
+ value: 27.272999999999996
1021
+ - type: precision_at_10
1022
+ value: 6.285
1023
+ - type: precision_at_100
1024
+ value: 1.389
1025
+ - type: precision_at_1000
1026
+ value: 0.232
1027
+ - type: precision_at_3
1028
+ value: 14.427000000000001
1029
+ - type: precision_at_5
1030
+ value: 10.356
1031
+ - type: recall_at_1
1032
+ value: 22.408
1033
+ - type: recall_at_10
1034
+ value: 41.318
1035
+ - type: recall_at_100
1036
+ value: 70.539
1037
+ - type: recall_at_1000
1038
+ value: 90.197
1039
+ - type: recall_at_3
1040
+ value: 32.513
1041
+ - type: recall_at_5
1042
+ value: 37.0
1043
+ - task:
1044
+ type: Retrieval
1045
+ dataset:
1046
+ type: BeIR/cqadupstack
1047
+ name: MTEB CQADupstackWordpressRetrieval
1048
+ config: default
1049
+ split: test
1050
+ revision: None
1051
+ metrics:
1052
+ - type: map_at_1
1053
+ value: 17.258000000000003
1054
+ - type: map_at_10
1055
+ value: 24.294
1056
+ - type: map_at_100
1057
+ value: 25.305
1058
+ - type: map_at_1000
1059
+ value: 25.419999999999998
1060
+ - type: map_at_3
1061
+ value: 22.326999999999998
1062
+ - type: map_at_5
1063
+ value: 23.31
1064
+ - type: mrr_at_1
1065
+ value: 18.484
1066
+ - type: mrr_at_10
1067
+ value: 25.863999999999997
1068
+ - type: mrr_at_100
1069
+ value: 26.766000000000002
1070
+ - type: mrr_at_1000
1071
+ value: 26.855
1072
+ - type: mrr_at_3
1073
+ value: 23.968
1074
+ - type: mrr_at_5
1075
+ value: 24.911
1076
+ - type: ndcg_at_1
1077
+ value: 18.484
1078
+ - type: ndcg_at_10
1079
+ value: 28.433000000000003
1080
+ - type: ndcg_at_100
1081
+ value: 33.405
1082
+ - type: ndcg_at_1000
1083
+ value: 36.375
1084
+ - type: ndcg_at_3
1085
+ value: 24.455
1086
+ - type: ndcg_at_5
1087
+ value: 26.031
1088
+ - type: precision_at_1
1089
+ value: 18.484
1090
+ - type: precision_at_10
1091
+ value: 4.603
1092
+ - type: precision_at_100
1093
+ value: 0.773
1094
+ - type: precision_at_1000
1095
+ value: 0.11299999999999999
1096
+ - type: precision_at_3
1097
+ value: 10.659
1098
+ - type: precision_at_5
1099
+ value: 7.505000000000001
1100
+ - type: recall_at_1
1101
+ value: 17.258000000000003
1102
+ - type: recall_at_10
1103
+ value: 39.589999999999996
1104
+ - type: recall_at_100
1105
+ value: 62.592000000000006
1106
+ - type: recall_at_1000
1107
+ value: 84.917
1108
+ - type: recall_at_3
1109
+ value: 28.706
1110
+ - type: recall_at_5
1111
+ value: 32.224000000000004
1112
+ - task:
1113
+ type: Retrieval
1114
+ dataset:
1115
+ type: climate-fever
1116
+ name: MTEB ClimateFEVER
1117
+ config: default
1118
+ split: test
1119
+ revision: None
1120
+ metrics:
1121
+ - type: map_at_1
1122
+ value: 10.578999999999999
1123
+ - type: map_at_10
1124
+ value: 17.642
1125
+ - type: map_at_100
1126
+ value: 19.451
1127
+ - type: map_at_1000
1128
+ value: 19.647000000000002
1129
+ - type: map_at_3
1130
+ value: 14.618
1131
+ - type: map_at_5
1132
+ value: 16.145
1133
+ - type: mrr_at_1
1134
+ value: 23.322000000000003
1135
+ - type: mrr_at_10
1136
+ value: 34.204
1137
+ - type: mrr_at_100
1138
+ value: 35.185
1139
+ - type: mrr_at_1000
1140
+ value: 35.235
1141
+ - type: mrr_at_3
1142
+ value: 30.847
1143
+ - type: mrr_at_5
1144
+ value: 32.824
1145
+ - type: ndcg_at_1
1146
+ value: 23.322000000000003
1147
+ - type: ndcg_at_10
1148
+ value: 25.352999999999998
1149
+ - type: ndcg_at_100
1150
+ value: 32.574
1151
+ - type: ndcg_at_1000
1152
+ value: 36.073
1153
+ - type: ndcg_at_3
1154
+ value: 20.318
1155
+ - type: ndcg_at_5
1156
+ value: 22.111
1157
+ - type: precision_at_1
1158
+ value: 23.322000000000003
1159
+ - type: precision_at_10
1160
+ value: 8.02
1161
+ - type: precision_at_100
1162
+ value: 1.5730000000000002
1163
+ - type: precision_at_1000
1164
+ value: 0.22200000000000003
1165
+ - type: precision_at_3
1166
+ value: 15.049000000000001
1167
+ - type: precision_at_5
1168
+ value: 11.87
1169
+ - type: recall_at_1
1170
+ value: 10.578999999999999
1171
+ - type: recall_at_10
1172
+ value: 30.964999999999996
1173
+ - type: recall_at_100
1174
+ value: 55.986000000000004
1175
+ - type: recall_at_1000
1176
+ value: 75.565
1177
+ - type: recall_at_3
1178
+ value: 18.686
1179
+ - type: recall_at_5
1180
+ value: 23.629
1181
+ - task:
1182
+ type: Retrieval
1183
+ dataset:
1184
+ type: dbpedia-entity
1185
+ name: MTEB DBPedia
1186
+ config: default
1187
+ split: test
1188
+ revision: None
1189
+ metrics:
1190
+ - type: map_at_1
1191
+ value: 7.327
1192
+ - type: map_at_10
1193
+ value: 14.904
1194
+ - type: map_at_100
1195
+ value: 20.29
1196
+ - type: map_at_1000
1197
+ value: 21.42
1198
+ - type: map_at_3
1199
+ value: 10.911
1200
+ - type: map_at_5
1201
+ value: 12.791
1202
+ - type: mrr_at_1
1203
+ value: 57.25
1204
+ - type: mrr_at_10
1205
+ value: 66.62700000000001
1206
+ - type: mrr_at_100
1207
+ value: 67.035
1208
+ - type: mrr_at_1000
1209
+ value: 67.052
1210
+ - type: mrr_at_3
1211
+ value: 64.833
1212
+ - type: mrr_at_5
1213
+ value: 65.908
1214
+ - type: ndcg_at_1
1215
+ value: 43.75
1216
+ - type: ndcg_at_10
1217
+ value: 32.246
1218
+ - type: ndcg_at_100
1219
+ value: 35.774
1220
+ - type: ndcg_at_1000
1221
+ value: 42.872
1222
+ - type: ndcg_at_3
1223
+ value: 36.64
1224
+ - type: ndcg_at_5
1225
+ value: 34.487
1226
+ - type: precision_at_1
1227
+ value: 57.25
1228
+ - type: precision_at_10
1229
+ value: 25.924999999999997
1230
+ - type: precision_at_100
1231
+ value: 7.670000000000001
1232
+ - type: precision_at_1000
1233
+ value: 1.599
1234
+ - type: precision_at_3
1235
+ value: 41.167
1236
+ - type: precision_at_5
1237
+ value: 34.65
1238
+ - type: recall_at_1
1239
+ value: 7.327
1240
+ - type: recall_at_10
1241
+ value: 19.625
1242
+ - type: recall_at_100
1243
+ value: 41.601
1244
+ - type: recall_at_1000
1245
+ value: 65.117
1246
+ - type: recall_at_3
1247
+ value: 12.308
1248
+ - type: recall_at_5
1249
+ value: 15.437999999999999
1250
+ - task:
1251
+ type: Classification
1252
+ dataset:
1253
+ type: mteb/emotion
1254
+ name: MTEB EmotionClassification
1255
+ config: default
1256
+ split: test
1257
+ revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1258
+ metrics:
1259
+ - type: accuracy
1260
+ value: 44.53
1261
+ - type: f1
1262
+ value: 39.39884255816736
1263
+ - task:
1264
+ type: Retrieval
1265
+ dataset:
1266
+ type: fever
1267
+ name: MTEB FEVER
1268
+ config: default
1269
+ split: test
1270
+ revision: None
1271
+ metrics:
1272
+ - type: map_at_1
1273
+ value: 58.913000000000004
1274
+ - type: map_at_10
1275
+ value: 69.592
1276
+ - type: map_at_100
1277
+ value: 69.95599999999999
1278
+ - type: map_at_1000
1279
+ value: 69.973
1280
+ - type: map_at_3
1281
+ value: 67.716
1282
+ - type: map_at_5
1283
+ value: 68.899
1284
+ - type: mrr_at_1
1285
+ value: 63.561
1286
+ - type: mrr_at_10
1287
+ value: 74.2
1288
+ - type: mrr_at_100
1289
+ value: 74.468
1290
+ - type: mrr_at_1000
1291
+ value: 74.47500000000001
1292
+ - type: mrr_at_3
1293
+ value: 72.442
1294
+ - type: mrr_at_5
1295
+ value: 73.58
1296
+ - type: ndcg_at_1
1297
+ value: 63.561
1298
+ - type: ndcg_at_10
1299
+ value: 74.988
1300
+ - type: ndcg_at_100
1301
+ value: 76.52799999999999
1302
+ - type: ndcg_at_1000
1303
+ value: 76.88000000000001
1304
+ - type: ndcg_at_3
1305
+ value: 71.455
1306
+ - type: ndcg_at_5
1307
+ value: 73.42699999999999
1308
+ - type: precision_at_1
1309
+ value: 63.561
1310
+ - type: precision_at_10
1311
+ value: 9.547
1312
+ - type: precision_at_100
1313
+ value: 1.044
1314
+ - type: precision_at_1000
1315
+ value: 0.109
1316
+ - type: precision_at_3
1317
+ value: 28.143
1318
+ - type: precision_at_5
1319
+ value: 18.008
1320
+ - type: recall_at_1
1321
+ value: 58.913000000000004
1322
+ - type: recall_at_10
1323
+ value: 87.18
1324
+ - type: recall_at_100
1325
+ value: 93.852
1326
+ - type: recall_at_1000
1327
+ value: 96.256
1328
+ - type: recall_at_3
1329
+ value: 77.55199999999999
1330
+ - type: recall_at_5
1331
+ value: 82.42399999999999
1332
+ - task:
1333
+ type: Retrieval
1334
+ dataset:
1335
+ type: fiqa
1336
+ name: MTEB FiQA2018
1337
+ config: default
1338
+ split: test
1339
+ revision: None
1340
+ metrics:
1341
+ - type: map_at_1
1342
+ value: 11.761000000000001
1343
+ - type: map_at_10
1344
+ value: 19.564999999999998
1345
+ - type: map_at_100
1346
+ value: 21.099
1347
+ - type: map_at_1000
1348
+ value: 21.288999999999998
1349
+ - type: map_at_3
1350
+ value: 16.683999999999997
1351
+ - type: map_at_5
1352
+ value: 18.307000000000002
1353
+ - type: mrr_at_1
1354
+ value: 23.302
1355
+ - type: mrr_at_10
1356
+ value: 30.979
1357
+ - type: mrr_at_100
1358
+ value: 32.121
1359
+ - type: mrr_at_1000
1360
+ value: 32.186
1361
+ - type: mrr_at_3
1362
+ value: 28.549000000000003
1363
+ - type: mrr_at_5
1364
+ value: 30.038999999999998
1365
+ - type: ndcg_at_1
1366
+ value: 23.302
1367
+ - type: ndcg_at_10
1368
+ value: 25.592
1369
+ - type: ndcg_at_100
1370
+ value: 32.416
1371
+ - type: ndcg_at_1000
1372
+ value: 36.277
1373
+ - type: ndcg_at_3
1374
+ value: 22.151
1375
+ - type: ndcg_at_5
1376
+ value: 23.483999999999998
1377
+ - type: precision_at_1
1378
+ value: 23.302
1379
+ - type: precision_at_10
1380
+ value: 7.377000000000001
1381
+ - type: precision_at_100
1382
+ value: 1.415
1383
+ - type: precision_at_1000
1384
+ value: 0.212
1385
+ - type: precision_at_3
1386
+ value: 14.712
1387
+ - type: precision_at_5
1388
+ value: 11.358
1389
+ - type: recall_at_1
1390
+ value: 11.761000000000001
1391
+ - type: recall_at_10
1392
+ value: 31.696
1393
+ - type: recall_at_100
1394
+ value: 58.01500000000001
1395
+ - type: recall_at_1000
1396
+ value: 81.572
1397
+ - type: recall_at_3
1398
+ value: 20.742
1399
+ - type: recall_at_5
1400
+ value: 25.707
1401
+ - task:
1402
+ type: Retrieval
1403
+ dataset:
1404
+ type: hotpotqa
1405
+ name: MTEB HotpotQA
1406
+ config: default
1407
+ split: test
1408
+ revision: None
1409
+ metrics:
1410
+ - type: map_at_1
1411
+ value: 32.275
1412
+ - type: map_at_10
1413
+ value: 44.712
1414
+ - type: map_at_100
1415
+ value: 45.621
1416
+ - type: map_at_1000
1417
+ value: 45.698
1418
+ - type: map_at_3
1419
+ value: 42.016999999999996
1420
+ - type: map_at_5
1421
+ value: 43.659
1422
+ - type: mrr_at_1
1423
+ value: 64.551
1424
+ - type: mrr_at_10
1425
+ value: 71.58099999999999
1426
+ - type: mrr_at_100
1427
+ value: 71.952
1428
+ - type: mrr_at_1000
1429
+ value: 71.96900000000001
1430
+ - type: mrr_at_3
1431
+ value: 70.236
1432
+ - type: mrr_at_5
1433
+ value: 71.051
1434
+ - type: ndcg_at_1
1435
+ value: 64.551
1436
+ - type: ndcg_at_10
1437
+ value: 53.913999999999994
1438
+ - type: ndcg_at_100
1439
+ value: 57.421
1440
+ - type: ndcg_at_1000
1441
+ value: 59.06
1442
+ - type: ndcg_at_3
1443
+ value: 49.716
1444
+ - type: ndcg_at_5
1445
+ value: 51.971999999999994
1446
+ - type: precision_at_1
1447
+ value: 64.551
1448
+ - type: precision_at_10
1449
+ value: 11.110000000000001
1450
+ - type: precision_at_100
1451
+ value: 1.388
1452
+ - type: precision_at_1000
1453
+ value: 0.161
1454
+ - type: precision_at_3
1455
+ value: 30.822
1456
+ - type: precision_at_5
1457
+ value: 20.273
1458
+ - type: recall_at_1
1459
+ value: 32.275
1460
+ - type: recall_at_10
1461
+ value: 55.55
1462
+ - type: recall_at_100
1463
+ value: 69.38600000000001
1464
+ - type: recall_at_1000
1465
+ value: 80.35799999999999
1466
+ - type: recall_at_3
1467
+ value: 46.232
1468
+ - type: recall_at_5
1469
+ value: 50.682
1470
+ - task:
1471
+ type: Classification
1472
+ dataset:
1473
+ type: mteb/imdb
1474
+ name: MTEB ImdbClassification
1475
+ config: default
1476
+ split: test
1477
+ revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1478
+ metrics:
1479
+ - type: accuracy
1480
+ value: 76.4604
1481
+ - type: ap
1482
+ value: 70.40498168422701
1483
+ - type: f1
1484
+ value: 76.38572688476046
1485
+ - task:
1486
+ type: Retrieval
1487
+ dataset:
1488
+ type: msmarco
1489
+ name: MTEB MSMARCO
1490
+ config: default
1491
+ split: dev
1492
+ revision: None
1493
+ metrics:
1494
+ - type: map_at_1
1495
+ value: 15.065999999999999
1496
+ - type: map_at_10
1497
+ value: 25.058000000000003
1498
+ - type: map_at_100
1499
+ value: 26.268
1500
+ - type: map_at_1000
1501
+ value: 26.344
1502
+ - type: map_at_3
1503
+ value: 21.626
1504
+ - type: map_at_5
1505
+ value: 23.513
1506
+ - type: mrr_at_1
1507
+ value: 15.501000000000001
1508
+ - type: mrr_at_10
1509
+ value: 25.548
1510
+ - type: mrr_at_100
1511
+ value: 26.723000000000003
1512
+ - type: mrr_at_1000
1513
+ value: 26.793
1514
+ - type: mrr_at_3
1515
+ value: 22.142
1516
+ - type: mrr_at_5
1517
+ value: 24.024
1518
+ - type: ndcg_at_1
1519
+ value: 15.501000000000001
1520
+ - type: ndcg_at_10
1521
+ value: 31.008000000000003
1522
+ - type: ndcg_at_100
1523
+ value: 37.08
1524
+ - type: ndcg_at_1000
1525
+ value: 39.102
1526
+ - type: ndcg_at_3
1527
+ value: 23.921999999999997
1528
+ - type: ndcg_at_5
1529
+ value: 27.307
1530
+ - type: precision_at_1
1531
+ value: 15.501000000000001
1532
+ - type: precision_at_10
1533
+ value: 5.155
1534
+ - type: precision_at_100
1535
+ value: 0.822
1536
+ - type: precision_at_1000
1537
+ value: 0.099
1538
+ - type: precision_at_3
1539
+ value: 10.363
1540
+ - type: precision_at_5
1541
+ value: 7.917000000000001
1542
+ - type: recall_at_1
1543
+ value: 15.065999999999999
1544
+ - type: recall_at_10
1545
+ value: 49.507
1546
+ - type: recall_at_100
1547
+ value: 78.118
1548
+ - type: recall_at_1000
1549
+ value: 93.881
1550
+ - type: recall_at_3
1551
+ value: 30.075000000000003
1552
+ - type: recall_at_5
1553
+ value: 38.222
1554
+ - task:
1555
+ type: Classification
1556
+ dataset:
1557
+ type: mteb/mtop_domain
1558
+ name: MTEB MTOPDomainClassification (en)
1559
+ config: en
1560
+ split: test
1561
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1562
+ metrics:
1563
+ - type: accuracy
1564
+ value: 90.6703146374829
1565
+ - type: f1
1566
+ value: 90.1258004293966
1567
+ - task:
1568
+ type: Classification
1569
+ dataset:
1570
+ type: mteb/mtop_intent
1571
+ name: MTEB MTOPIntentClassification (en)
1572
+ config: en
1573
+ split: test
1574
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1575
+ metrics:
1576
+ - type: accuracy
1577
+ value: 68.29229366165072
1578
+ - type: f1
1579
+ value: 50.016194478997875
1580
+ - task:
1581
+ type: Classification
1582
+ dataset:
1583
+ type: mteb/amazon_massive_intent
1584
+ name: MTEB MassiveIntentClassification (en)
1585
+ config: en
1586
+ split: test
1587
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1588
+ metrics:
1589
+ - type: accuracy
1590
+ value: 68.57767316745124
1591
+ - type: f1
1592
+ value: 67.16194062146954
1593
+ - task:
1594
+ type: Classification
1595
+ dataset:
1596
+ type: mteb/amazon_massive_scenario
1597
+ name: MTEB MassiveScenarioClassification (en)
1598
+ config: en
1599
+ split: test
1600
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1601
+ metrics:
1602
+ - type: accuracy
1603
+ value: 73.92064559515804
1604
+ - type: f1
1605
+ value: 73.6680729569968
1606
+ - task:
1607
+ type: Clustering
1608
+ dataset:
1609
+ type: mteb/medrxiv-clustering-p2p
1610
+ name: MTEB MedrxivClusteringP2P
1611
+ config: default
1612
+ split: test
1613
+ revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1614
+ metrics:
1615
+ - type: v_measure
1616
+ value: 31.56335607367883
1617
+ - task:
1618
+ type: Clustering
1619
+ dataset:
1620
+ type: mteb/medrxiv-clustering-s2s
1621
+ name: MTEB MedrxivClusteringS2S
1622
+ config: default
1623
+ split: test
1624
+ revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1625
+ metrics:
1626
+ - type: v_measure
1627
+ value: 28.131807833734268
1628
+ - task:
1629
+ type: Reranking
1630
+ dataset:
1631
+ type: mteb/mind_small
1632
+ name: MTEB MindSmallReranking
1633
+ config: default
1634
+ split: test
1635
+ revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1636
+ metrics:
1637
+ - type: map
1638
+ value: 31.07390328719844
1639
+ - type: mrr
1640
+ value: 32.117370992867905
1641
+ - task:
1642
+ type: Retrieval
1643
+ dataset:
1644
+ type: nfcorpus
1645
+ name: MTEB NFCorpus
1646
+ config: default
1647
+ split: test
1648
+ revision: None
1649
+ metrics:
1650
+ - type: map_at_1
1651
+ value: 5.274
1652
+ - type: map_at_10
1653
+ value: 11.489
1654
+ - type: map_at_100
1655
+ value: 14.518
1656
+ - type: map_at_1000
1657
+ value: 15.914
1658
+ - type: map_at_3
1659
+ value: 8.399
1660
+ - type: map_at_5
1661
+ value: 9.889000000000001
1662
+ - type: mrr_at_1
1663
+ value: 42.724000000000004
1664
+ - type: mrr_at_10
1665
+ value: 51.486
1666
+ - type: mrr_at_100
1667
+ value: 51.941
1668
+ - type: mrr_at_1000
1669
+ value: 51.99
1670
+ - type: mrr_at_3
1671
+ value: 49.278
1672
+ - type: mrr_at_5
1673
+ value: 50.485
1674
+ - type: ndcg_at_1
1675
+ value: 39.938
1676
+ - type: ndcg_at_10
1677
+ value: 31.862000000000002
1678
+ - type: ndcg_at_100
1679
+ value: 29.235
1680
+ - type: ndcg_at_1000
1681
+ value: 37.802
1682
+ - type: ndcg_at_3
1683
+ value: 35.754999999999995
1684
+ - type: ndcg_at_5
1685
+ value: 34.447
1686
+ - type: precision_at_1
1687
+ value: 42.105
1688
+ - type: precision_at_10
1689
+ value: 23.901
1690
+ - type: precision_at_100
1691
+ value: 7.715
1692
+ - type: precision_at_1000
1693
+ value: 2.045
1694
+ - type: precision_at_3
1695
+ value: 33.437
1696
+ - type: precision_at_5
1697
+ value: 29.782999999999998
1698
+ - type: recall_at_1
1699
+ value: 5.274
1700
+ - type: recall_at_10
1701
+ value: 15.351
1702
+ - type: recall_at_100
1703
+ value: 29.791
1704
+ - type: recall_at_1000
1705
+ value: 60.722
1706
+ - type: recall_at_3
1707
+ value: 9.411
1708
+ - type: recall_at_5
1709
+ value: 12.171999999999999
1710
+ - task:
1711
+ type: Retrieval
1712
+ dataset:
1713
+ type: nq
1714
+ name: MTEB NQ
1715
+ config: default
1716
+ split: test
1717
+ revision: None
1718
+ metrics:
1719
+ - type: map_at_1
1720
+ value: 16.099
1721
+ - type: map_at_10
1722
+ value: 27.913
1723
+ - type: map_at_100
1724
+ value: 29.281000000000002
1725
+ - type: map_at_1000
1726
+ value: 29.343999999999998
1727
+ - type: map_at_3
1728
+ value: 23.791
1729
+ - type: map_at_5
1730
+ value: 26.049
1731
+ - type: mrr_at_1
1732
+ value: 18.337
1733
+ - type: mrr_at_10
1734
+ value: 29.953999999999997
1735
+ - type: mrr_at_100
1736
+ value: 31.080999999999996
1737
+ - type: mrr_at_1000
1738
+ value: 31.130000000000003
1739
+ - type: mrr_at_3
1740
+ value: 26.168000000000003
1741
+ - type: mrr_at_5
1742
+ value: 28.277
1743
+ - type: ndcg_at_1
1744
+ value: 18.308
1745
+ - type: ndcg_at_10
1746
+ value: 34.938
1747
+ - type: ndcg_at_100
1748
+ value: 41.125
1749
+ - type: ndcg_at_1000
1750
+ value: 42.708
1751
+ - type: ndcg_at_3
1752
+ value: 26.805
1753
+ - type: ndcg_at_5
1754
+ value: 30.686999999999998
1755
+ - type: precision_at_1
1756
+ value: 18.308
1757
+ - type: precision_at_10
1758
+ value: 6.476999999999999
1759
+ - type: precision_at_100
1760
+ value: 0.9939999999999999
1761
+ - type: precision_at_1000
1762
+ value: 0.11399999999999999
1763
+ - type: precision_at_3
1764
+ value: 12.784999999999998
1765
+ - type: precision_at_5
1766
+ value: 9.878
1767
+ - type: recall_at_1
1768
+ value: 16.099
1769
+ - type: recall_at_10
1770
+ value: 54.63
1771
+ - type: recall_at_100
1772
+ value: 82.24900000000001
1773
+ - type: recall_at_1000
1774
+ value: 94.242
1775
+ - type: recall_at_3
1776
+ value: 33.174
1777
+ - type: recall_at_5
1778
+ value: 42.164
1779
+ - task:
1780
+ type: Retrieval
1781
+ dataset:
1782
+ type: quora
1783
+ name: MTEB QuoraRetrieval
1784
+ config: default
1785
+ split: test
1786
+ revision: None
1787
+ metrics:
1788
+ - type: map_at_1
1789
+ value: 67.947
1790
+ - type: map_at_10
1791
+ value: 81.499
1792
+ - type: map_at_100
1793
+ value: 82.17
1794
+ - type: map_at_1000
1795
+ value: 82.194
1796
+ - type: map_at_3
1797
+ value: 78.567
1798
+ - type: map_at_5
1799
+ value: 80.34400000000001
1800
+ - type: mrr_at_1
1801
+ value: 78.18
1802
+ - type: mrr_at_10
1803
+ value: 85.05
1804
+ - type: mrr_at_100
1805
+ value: 85.179
1806
+ - type: mrr_at_1000
1807
+ value: 85.181
1808
+ - type: mrr_at_3
1809
+ value: 83.91
1810
+ - type: mrr_at_5
1811
+ value: 84.638
1812
+ - type: ndcg_at_1
1813
+ value: 78.2
1814
+ - type: ndcg_at_10
1815
+ value: 85.715
1816
+ - type: ndcg_at_100
1817
+ value: 87.2
1818
+ - type: ndcg_at_1000
1819
+ value: 87.39
1820
+ - type: ndcg_at_3
1821
+ value: 82.572
1822
+ - type: ndcg_at_5
1823
+ value: 84.176
1824
+ - type: precision_at_1
1825
+ value: 78.2
1826
+ - type: precision_at_10
1827
+ value: 12.973
1828
+ - type: precision_at_100
1829
+ value: 1.5010000000000001
1830
+ - type: precision_at_1000
1831
+ value: 0.156
1832
+ - type: precision_at_3
1833
+ value: 35.949999999999996
1834
+ - type: precision_at_5
1835
+ value: 23.62
1836
+ - type: recall_at_1
1837
+ value: 67.947
1838
+ - type: recall_at_10
1839
+ value: 93.804
1840
+ - type: recall_at_100
1841
+ value: 98.971
1842
+ - type: recall_at_1000
1843
+ value: 99.91600000000001
1844
+ - type: recall_at_3
1845
+ value: 84.75399999999999
1846
+ - type: recall_at_5
1847
+ value: 89.32
1848
+ - task:
1849
+ type: Clustering
1850
+ dataset:
1851
+ type: mteb/reddit-clustering
1852
+ name: MTEB RedditClustering
1853
+ config: default
1854
+ split: test
1855
+ revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
1856
+ metrics:
1857
+ - type: v_measure
1858
+ value: 45.457201684255104
1859
+ - task:
1860
+ type: Clustering
1861
+ dataset:
1862
+ type: mteb/reddit-clustering-p2p
1863
+ name: MTEB RedditClusteringP2P
1864
+ config: default
1865
+ split: test
1866
+ revision: 282350215ef01743dc01b456c7f5241fa8937f16
1867
+ metrics:
1868
+ - type: v_measure
1869
+ value: 55.162226937477875
1870
+ - task:
1871
+ type: Retrieval
1872
+ dataset:
1873
+ type: scidocs
1874
+ name: MTEB SCIDOCS
1875
+ config: default
1876
+ split: test
1877
+ revision: None
1878
+ metrics:
1879
+ - type: map_at_1
1880
+ value: 4.173
1881
+ - type: map_at_10
1882
+ value: 10.463000000000001
1883
+ - type: map_at_100
1884
+ value: 12.278
1885
+ - type: map_at_1000
1886
+ value: 12.572
1887
+ - type: map_at_3
1888
+ value: 7.528
1889
+ - type: map_at_5
1890
+ value: 8.863
1891
+ - type: mrr_at_1
1892
+ value: 20.599999999999998
1893
+ - type: mrr_at_10
1894
+ value: 30.422
1895
+ - type: mrr_at_100
1896
+ value: 31.6
1897
+ - type: mrr_at_1000
1898
+ value: 31.663000000000004
1899
+ - type: mrr_at_3
1900
+ value: 27.400000000000002
1901
+ - type: mrr_at_5
1902
+ value: 29.065
1903
+ - type: ndcg_at_1
1904
+ value: 20.599999999999998
1905
+ - type: ndcg_at_10
1906
+ value: 17.687
1907
+ - type: ndcg_at_100
1908
+ value: 25.172
1909
+ - type: ndcg_at_1000
1910
+ value: 30.617
1911
+ - type: ndcg_at_3
1912
+ value: 16.81
1913
+ - type: ndcg_at_5
1914
+ value: 14.499
1915
+ - type: precision_at_1
1916
+ value: 20.599999999999998
1917
+ - type: precision_at_10
1918
+ value: 9.17
1919
+ - type: precision_at_100
1920
+ value: 2.004
1921
+ - type: precision_at_1000
1922
+ value: 0.332
1923
+ - type: precision_at_3
1924
+ value: 15.6
1925
+ - type: precision_at_5
1926
+ value: 12.58
1927
+ - type: recall_at_1
1928
+ value: 4.173
1929
+ - type: recall_at_10
1930
+ value: 18.575
1931
+ - type: recall_at_100
1932
+ value: 40.692
1933
+ - type: recall_at_1000
1934
+ value: 67.467
1935
+ - type: recall_at_3
1936
+ value: 9.488000000000001
1937
+ - type: recall_at_5
1938
+ value: 12.738
1939
+ - task:
1940
+ type: STS
1941
+ dataset:
1942
+ type: mteb/sickr-sts
1943
+ name: MTEB SICK-R
1944
+ config: default
1945
+ split: test
1946
+ revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
1947
+ metrics:
1948
+ - type: cos_sim_pearson
1949
+ value: 81.12603499315416
1950
+ - type: cos_sim_spearman
1951
+ value: 73.62060290948378
1952
+ - type: euclidean_pearson
1953
+ value: 78.14083565781135
1954
+ - type: euclidean_spearman
1955
+ value: 73.16840437541543
1956
+ - type: manhattan_pearson
1957
+ value: 77.92017261109734
1958
+ - type: manhattan_spearman
1959
+ value: 72.8805059949965
1960
+ - task:
1961
+ type: STS
1962
+ dataset:
1963
+ type: mteb/sts12-sts
1964
+ name: MTEB STS12
1965
+ config: default
1966
+ split: test
1967
+ revision: a0d554a64d88156834ff5ae9920b964011b16384
1968
+ metrics:
1969
+ - type: cos_sim_pearson
1970
+ value: 79.75955377133172
1971
+ - type: cos_sim_spearman
1972
+ value: 71.8872633964069
1973
+ - type: euclidean_pearson
1974
+ value: 76.31922068538256
1975
+ - type: euclidean_spearman
1976
+ value: 70.86449661855376
1977
+ - type: manhattan_pearson
1978
+ value: 76.47852229730407
1979
+ - type: manhattan_spearman
1980
+ value: 70.99367421984789
1981
+ - task:
1982
+ type: STS
1983
+ dataset:
1984
+ type: mteb/sts13-sts
1985
+ name: MTEB STS13
1986
+ config: default
1987
+ split: test
1988
+ revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
1989
+ metrics:
1990
+ - type: cos_sim_pearson
1991
+ value: 78.80762722908158
1992
+ - type: cos_sim_spearman
1993
+ value: 79.84588978756372
1994
+ - type: euclidean_pearson
1995
+ value: 79.8216849781164
1996
+ - type: euclidean_spearman
1997
+ value: 80.22647061695481
1998
+ - type: manhattan_pearson
1999
+ value: 79.56604194112572
2000
+ - type: manhattan_spearman
2001
+ value: 79.96495189862462
2002
+ - task:
2003
+ type: STS
2004
+ dataset:
2005
+ type: mteb/sts14-sts
2006
+ name: MTEB STS14
2007
+ config: default
2008
+ split: test
2009
+ revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
2010
+ metrics:
2011
+ - type: cos_sim_pearson
2012
+ value: 80.1012718092742
2013
+ - type: cos_sim_spearman
2014
+ value: 76.86011381793661
2015
+ - type: euclidean_pearson
2016
+ value: 79.94426039862019
2017
+ - type: euclidean_spearman
2018
+ value: 77.36751135465131
2019
+ - type: manhattan_pearson
2020
+ value: 79.87959373304288
2021
+ - type: manhattan_spearman
2022
+ value: 77.37717129004746
2023
+ - task:
2024
+ type: STS
2025
+ dataset:
2026
+ type: mteb/sts15-sts
2027
+ name: MTEB STS15
2028
+ config: default
2029
+ split: test
2030
+ revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
2031
+ metrics:
2032
+ - type: cos_sim_pearson
2033
+ value: 83.90618420346104
2034
+ - type: cos_sim_spearman
2035
+ value: 84.77290791243722
2036
+ - type: euclidean_pearson
2037
+ value: 84.64732258073293
2038
+ - type: euclidean_spearman
2039
+ value: 85.21053649543357
2040
+ - type: manhattan_pearson
2041
+ value: 84.61616883522647
2042
+ - type: manhattan_spearman
2043
+ value: 85.19803126766931
2044
+ - task:
2045
+ type: STS
2046
+ dataset:
2047
+ type: mteb/sts16-sts
2048
+ name: MTEB STS16
2049
+ config: default
2050
+ split: test
2051
+ revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
2052
+ metrics:
2053
+ - type: cos_sim_pearson
2054
+ value: 80.52192114059063
2055
+ - type: cos_sim_spearman
2056
+ value: 81.9103244827937
2057
+ - type: euclidean_pearson
2058
+ value: 80.99375176138985
2059
+ - type: euclidean_spearman
2060
+ value: 81.540250641079
2061
+ - type: manhattan_pearson
2062
+ value: 80.84979573396426
2063
+ - type: manhattan_spearman
2064
+ value: 81.3742591621492
2065
+ - task:
2066
+ type: STS
2067
+ dataset:
2068
+ type: mteb/sts17-crosslingual-sts
2069
+ name: MTEB STS17 (en-en)
2070
+ config: en-en
2071
+ split: test
2072
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2073
+ metrics:
2074
+ - type: cos_sim_pearson
2075
+ value: 85.82166001234197
2076
+ - type: cos_sim_spearman
2077
+ value: 86.81857495659123
2078
+ - type: euclidean_pearson
2079
+ value: 85.72798403202849
2080
+ - type: euclidean_spearman
2081
+ value: 85.70482438950965
2082
+ - type: manhattan_pearson
2083
+ value: 85.51579093130357
2084
+ - type: manhattan_spearman
2085
+ value: 85.41233705379751
2086
+ - task:
2087
+ type: STS
2088
+ dataset:
2089
+ type: mteb/sts22-crosslingual-sts
2090
+ name: MTEB STS22 (en)
2091
+ config: en
2092
+ split: test
2093
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2094
+ metrics:
2095
+ - type: cos_sim_pearson
2096
+ value: 64.48071151079803
2097
+ - type: cos_sim_spearman
2098
+ value: 65.37838108084044
2099
+ - type: euclidean_pearson
2100
+ value: 64.67378947096257
2101
+ - type: euclidean_spearman
2102
+ value: 65.39187147219869
2103
+ - type: manhattan_pearson
2104
+ value: 65.35487466133208
2105
+ - type: manhattan_spearman
2106
+ value: 65.51328499442272
2107
+ - task:
2108
+ type: STS
2109
+ dataset:
2110
+ type: mteb/stsbenchmark-sts
2111
+ name: MTEB STSBenchmark
2112
+ config: default
2113
+ split: test
2114
+ revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2115
+ metrics:
2116
+ - type: cos_sim_pearson
2117
+ value: 82.64702367823314
2118
+ - type: cos_sim_spearman
2119
+ value: 82.49732953181818
2120
+ - type: euclidean_pearson
2121
+ value: 83.05996062475664
2122
+ - type: euclidean_spearman
2123
+ value: 82.28159546751176
2124
+ - type: manhattan_pearson
2125
+ value: 82.98305503664952
2126
+ - type: manhattan_spearman
2127
+ value: 82.18405771943928
2128
+ - task:
2129
+ type: Reranking
2130
+ dataset:
2131
+ type: mteb/scidocs-reranking
2132
+ name: MTEB SciDocsRR
2133
+ config: default
2134
+ split: test
2135
+ revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2136
+ metrics:
2137
+ - type: map
2138
+ value: 78.5744649318696
2139
+ - type: mrr
2140
+ value: 93.35386291268645
2141
+ - task:
2142
+ type: Retrieval
2143
+ dataset:
2144
+ type: scifact
2145
+ name: MTEB SciFact
2146
+ config: default
2147
+ split: test
2148
+ revision: None
2149
+ metrics:
2150
+ - type: map_at_1
2151
+ value: 52.093999999999994
2152
+ - type: map_at_10
2153
+ value: 61.646
2154
+ - type: map_at_100
2155
+ value: 62.197
2156
+ - type: map_at_1000
2157
+ value: 62.22800000000001
2158
+ - type: map_at_3
2159
+ value: 58.411
2160
+ - type: map_at_5
2161
+ value: 60.585
2162
+ - type: mrr_at_1
2163
+ value: 55.00000000000001
2164
+ - type: mrr_at_10
2165
+ value: 62.690999999999995
2166
+ - type: mrr_at_100
2167
+ value: 63.139
2168
+ - type: mrr_at_1000
2169
+ value: 63.166999999999994
2170
+ - type: mrr_at_3
2171
+ value: 60.111000000000004
2172
+ - type: mrr_at_5
2173
+ value: 61.778
2174
+ - type: ndcg_at_1
2175
+ value: 55.00000000000001
2176
+ - type: ndcg_at_10
2177
+ value: 66.271
2178
+ - type: ndcg_at_100
2179
+ value: 68.879
2180
+ - type: ndcg_at_1000
2181
+ value: 69.722
2182
+ - type: ndcg_at_3
2183
+ value: 60.672000000000004
2184
+ - type: ndcg_at_5
2185
+ value: 63.929
2186
+ - type: precision_at_1
2187
+ value: 55.00000000000001
2188
+ - type: precision_at_10
2189
+ value: 9.0
2190
+ - type: precision_at_100
2191
+ value: 1.043
2192
+ - type: precision_at_1000
2193
+ value: 0.11100000000000002
2194
+ - type: precision_at_3
2195
+ value: 23.555999999999997
2196
+ - type: precision_at_5
2197
+ value: 16.2
2198
+ - type: recall_at_1
2199
+ value: 52.093999999999994
2200
+ - type: recall_at_10
2201
+ value: 79.567
2202
+ - type: recall_at_100
2203
+ value: 91.60000000000001
2204
+ - type: recall_at_1000
2205
+ value: 98.333
2206
+ - type: recall_at_3
2207
+ value: 64.633
2208
+ - type: recall_at_5
2209
+ value: 72.68299999999999
2210
+ - task:
2211
+ type: PairClassification
2212
+ dataset:
2213
+ type: mteb/sprintduplicatequestions-pairclassification
2214
+ name: MTEB SprintDuplicateQuestions
2215
+ config: default
2216
+ split: test
2217
+ revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2218
+ metrics:
2219
+ - type: cos_sim_accuracy
2220
+ value: 99.83267326732673
2221
+ - type: cos_sim_ap
2222
+ value: 95.77995366495178
2223
+ - type: cos_sim_f1
2224
+ value: 91.51180311401306
2225
+ - type: cos_sim_precision
2226
+ value: 91.92734611503532
2227
+ - type: cos_sim_recall
2228
+ value: 91.10000000000001
2229
+ - type: dot_accuracy
2230
+ value: 99.63366336633663
2231
+ - type: dot_ap
2232
+ value: 88.53996286967461
2233
+ - type: dot_f1
2234
+ value: 81.06537530266343
2235
+ - type: dot_precision
2236
+ value: 78.59154929577464
2237
+ - type: dot_recall
2238
+ value: 83.7
2239
+ - type: euclidean_accuracy
2240
+ value: 99.82376237623762
2241
+ - type: euclidean_ap
2242
+ value: 95.53192209281187
2243
+ - type: euclidean_f1
2244
+ value: 91.19683481701286
2245
+ - type: euclidean_precision
2246
+ value: 90.21526418786692
2247
+ - type: euclidean_recall
2248
+ value: 92.2
2249
+ - type: manhattan_accuracy
2250
+ value: 99.82376237623762
2251
+ - type: manhattan_ap
2252
+ value: 95.55642082191741
2253
+ - type: manhattan_f1
2254
+ value: 91.16186693147964
2255
+ - type: manhattan_precision
2256
+ value: 90.53254437869822
2257
+ - type: manhattan_recall
2258
+ value: 91.8
2259
+ - type: max_accuracy
2260
+ value: 99.83267326732673
2261
+ - type: max_ap
2262
+ value: 95.77995366495178
2263
+ - type: max_f1
2264
+ value: 91.51180311401306
2265
+ - task:
2266
+ type: Clustering
2267
+ dataset:
2268
+ type: mteb/stackexchange-clustering
2269
+ name: MTEB StackExchangeClustering
2270
+ config: default
2271
+ split: test
2272
+ revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2273
+ metrics:
2274
+ - type: v_measure
2275
+ value: 54.508462134213474
2276
+ - task:
2277
+ type: Clustering
2278
+ dataset:
2279
+ type: mteb/stackexchange-clustering-p2p
2280
+ name: MTEB StackExchangeClusteringP2P
2281
+ config: default
2282
+ split: test
2283
+ revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2284
+ metrics:
2285
+ - type: v_measure
2286
+ value: 34.06549765184959
2287
+ - task:
2288
+ type: Reranking
2289
+ dataset:
2290
+ type: mteb/stackoverflowdupquestions-reranking
2291
+ name: MTEB StackOverflowDupQuestions
2292
+ config: default
2293
+ split: test
2294
+ revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2295
+ metrics:
2296
+ - type: map
2297
+ value: 49.43129549466616
2298
+ - type: mrr
2299
+ value: 50.20613169510227
2300
+ - task:
2301
+ type: Summarization
2302
+ dataset:
2303
+ type: mteb/summeval
2304
+ name: MTEB SummEval
2305
+ config: default
2306
+ split: test
2307
+ revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2308
+ metrics:
2309
+ - type: cos_sim_pearson
2310
+ value: 30.069516173193044
2311
+ - type: cos_sim_spearman
2312
+ value: 29.872498354017353
2313
+ - type: dot_pearson
2314
+ value: 28.80761257516063
2315
+ - type: dot_spearman
2316
+ value: 28.397422678527708
2317
+ - task:
2318
+ type: Retrieval
2319
+ dataset:
2320
+ type: trec-covid
2321
+ name: MTEB TRECCOVID
2322
+ config: default
2323
+ split: test
2324
+ revision: None
2325
+ metrics:
2326
+ - type: map_at_1
2327
+ value: 0.169
2328
+ - type: map_at_10
2329
+ value: 1.208
2330
+ - type: map_at_100
2331
+ value: 5.925
2332
+ - type: map_at_1000
2333
+ value: 14.427000000000001
2334
+ - type: map_at_3
2335
+ value: 0.457
2336
+ - type: map_at_5
2337
+ value: 0.716
2338
+ - type: mrr_at_1
2339
+ value: 64.0
2340
+ - type: mrr_at_10
2341
+ value: 74.075
2342
+ - type: mrr_at_100
2343
+ value: 74.303
2344
+ - type: mrr_at_1000
2345
+ value: 74.303
2346
+ - type: mrr_at_3
2347
+ value: 71.0
2348
+ - type: mrr_at_5
2349
+ value: 72.89999999999999
2350
+ - type: ndcg_at_1
2351
+ value: 57.99999999999999
2352
+ - type: ndcg_at_10
2353
+ value: 50.376
2354
+ - type: ndcg_at_100
2355
+ value: 38.582
2356
+ - type: ndcg_at_1000
2357
+ value: 35.663
2358
+ - type: ndcg_at_3
2359
+ value: 55.592
2360
+ - type: ndcg_at_5
2361
+ value: 53.647999999999996
2362
+ - type: precision_at_1
2363
+ value: 64.0
2364
+ - type: precision_at_10
2365
+ value: 53.2
2366
+ - type: precision_at_100
2367
+ value: 39.6
2368
+ - type: precision_at_1000
2369
+ value: 16.218
2370
+ - type: precision_at_3
2371
+ value: 59.333000000000006
2372
+ - type: precision_at_5
2373
+ value: 57.599999999999994
2374
+ - type: recall_at_1
2375
+ value: 0.169
2376
+ - type: recall_at_10
2377
+ value: 1.423
2378
+ - type: recall_at_100
2379
+ value: 9.049999999999999
2380
+ - type: recall_at_1000
2381
+ value: 34.056999999999995
2382
+ - type: recall_at_3
2383
+ value: 0.48700000000000004
2384
+ - type: recall_at_5
2385
+ value: 0.792
2386
+ - task:
2387
+ type: Retrieval
2388
+ dataset:
2389
+ type: webis-touche2020
2390
+ name: MTEB Touche2020
2391
+ config: default
2392
+ split: test
2393
+ revision: None
2394
+ metrics:
2395
+ - type: map_at_1
2396
+ value: 1.319
2397
+ - type: map_at_10
2398
+ value: 7.112
2399
+ - type: map_at_100
2400
+ value: 12.588
2401
+ - type: map_at_1000
2402
+ value: 14.056
2403
+ - type: map_at_3
2404
+ value: 2.8049999999999997
2405
+ - type: map_at_5
2406
+ value: 4.68
2407
+ - type: mrr_at_1
2408
+ value: 18.367
2409
+ - type: mrr_at_10
2410
+ value: 33.94
2411
+ - type: mrr_at_100
2412
+ value: 35.193000000000005
2413
+ - type: mrr_at_1000
2414
+ value: 35.193000000000005
2415
+ - type: mrr_at_3
2416
+ value: 29.932
2417
+ - type: mrr_at_5
2418
+ value: 32.279
2419
+ - type: ndcg_at_1
2420
+ value: 15.306000000000001
2421
+ - type: ndcg_at_10
2422
+ value: 18.096
2423
+ - type: ndcg_at_100
2424
+ value: 30.512
2425
+ - type: ndcg_at_1000
2426
+ value: 42.148
2427
+ - type: ndcg_at_3
2428
+ value: 17.034
2429
+ - type: ndcg_at_5
2430
+ value: 18.509
2431
+ - type: precision_at_1
2432
+ value: 18.367
2433
+ - type: precision_at_10
2434
+ value: 18.776
2435
+ - type: precision_at_100
2436
+ value: 7.02
2437
+ - type: precision_at_1000
2438
+ value: 1.467
2439
+ - type: precision_at_3
2440
+ value: 19.048000000000002
2441
+ - type: precision_at_5
2442
+ value: 22.041
2443
+ - type: recall_at_1
2444
+ value: 1.319
2445
+ - type: recall_at_10
2446
+ value: 13.748
2447
+ - type: recall_at_100
2448
+ value: 43.972
2449
+ - type: recall_at_1000
2450
+ value: 79.557
2451
+ - type: recall_at_3
2452
+ value: 4.042
2453
+ - type: recall_at_5
2454
+ value: 7.742
2455
+ - task:
2456
+ type: Classification
2457
+ dataset:
2458
+ type: mteb/toxic_conversations_50k
2459
+ name: MTEB ToxicConversationsClassification
2460
+ config: default
2461
+ split: test
2462
+ revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
2463
+ metrics:
2464
+ - type: accuracy
2465
+ value: 70.2282
2466
+ - type: ap
2467
+ value: 13.995763859570426
2468
+ - type: f1
2469
+ value: 54.08126256731344
2470
+ - task:
2471
+ type: Classification
2472
+ dataset:
2473
+ type: mteb/tweet_sentiment_extraction
2474
+ name: MTEB TweetSentimentExtractionClassification
2475
+ config: default
2476
+ split: test
2477
+ revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2478
+ metrics:
2479
+ - type: accuracy
2480
+ value: 57.64006791171477
2481
+ - type: f1
2482
+ value: 57.95841320748957
2483
+ - task:
2484
+ type: Clustering
2485
+ dataset:
2486
+ type: mteb/twentynewsgroups-clustering
2487
+ name: MTEB TwentyNewsgroupsClustering
2488
+ config: default
2489
+ split: test
2490
+ revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2491
+ metrics:
2492
+ - type: v_measure
2493
+ value: 40.19267841788564
2494
+ - task:
2495
+ type: PairClassification
2496
+ dataset:
2497
+ type: mteb/twittersemeval2015-pairclassification
2498
+ name: MTEB TwitterSemEval2015
2499
+ config: default
2500
+ split: test
2501
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2502
+ metrics:
2503
+ - type: cos_sim_accuracy
2504
+ value: 83.96614412588663
2505
+ - type: cos_sim_ap
2506
+ value: 67.75985678572738
2507
+ - type: cos_sim_f1
2508
+ value: 64.04661542276222
2509
+ - type: cos_sim_precision
2510
+ value: 60.406922357343305
2511
+ - type: cos_sim_recall
2512
+ value: 68.15303430079156
2513
+ - type: dot_accuracy
2514
+ value: 79.5732252488526
2515
+ - type: dot_ap
2516
+ value: 51.30562107572645
2517
+ - type: dot_f1
2518
+ value: 53.120759837177744
2519
+ - type: dot_precision
2520
+ value: 46.478037198258804
2521
+ - type: dot_recall
2522
+ value: 61.97889182058047
2523
+ - type: euclidean_accuracy
2524
+ value: 84.00786791440663
2525
+ - type: euclidean_ap
2526
+ value: 67.58930214486998
2527
+ - type: euclidean_f1
2528
+ value: 64.424821579775
2529
+ - type: euclidean_precision
2530
+ value: 59.4817958454322
2531
+ - type: euclidean_recall
2532
+ value: 70.26385224274406
2533
+ - type: manhattan_accuracy
2534
+ value: 83.87673600762949
2535
+ - type: manhattan_ap
2536
+ value: 67.4250981523309
2537
+ - type: manhattan_f1
2538
+ value: 64.10286658015808
2539
+ - type: manhattan_precision
2540
+ value: 57.96885001066781
2541
+ - type: manhattan_recall
2542
+ value: 71.68865435356201
2543
+ - type: max_accuracy
2544
+ value: 84.00786791440663
2545
+ - type: max_ap
2546
+ value: 67.75985678572738
2547
+ - type: max_f1
2548
+ value: 64.424821579775
2549
+ - task:
2550
+ type: PairClassification
2551
+ dataset:
2552
+ type: mteb/twitterurlcorpus-pairclassification
2553
+ name: MTEB TwitterURLCorpus
2554
+ config: default
2555
+ split: test
2556
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2557
+ metrics:
2558
+ - type: cos_sim_accuracy
2559
+ value: 88.41347459929368
2560
+ - type: cos_sim_ap
2561
+ value: 84.89261930113058
2562
+ - type: cos_sim_f1
2563
+ value: 77.13677607258877
2564
+ - type: cos_sim_precision
2565
+ value: 74.88581164358733
2566
+ - type: cos_sim_recall
2567
+ value: 79.52725592854944
2568
+ - type: dot_accuracy
2569
+ value: 86.32359219156285
2570
+ - type: dot_ap
2571
+ value: 79.29794992131094
2572
+ - type: dot_f1
2573
+ value: 72.84356337679777
2574
+ - type: dot_precision
2575
+ value: 67.31761478675462
2576
+ - type: dot_recall
2577
+ value: 79.35786880197105
2578
+ - type: euclidean_accuracy
2579
+ value: 88.33585593976791
2580
+ - type: euclidean_ap
2581
+ value: 84.73257641312746
2582
+ - type: euclidean_f1
2583
+ value: 76.83529582788195
2584
+ - type: euclidean_precision
2585
+ value: 72.76294052863436
2586
+ - type: euclidean_recall
2587
+ value: 81.3905143209116
2588
+ - type: manhattan_accuracy
2589
+ value: 88.3086894089339
2590
+ - type: manhattan_ap
2591
+ value: 84.66304891729399
2592
+ - type: manhattan_f1
2593
+ value: 76.8181650632165
2594
+ - type: manhattan_precision
2595
+ value: 73.6864436744219
2596
+ - type: manhattan_recall
2597
+ value: 80.22790267939637
2598
+ - type: max_accuracy
2599
+ value: 88.41347459929368
2600
+ - type: max_ap
2601
+ value: 84.89261930113058
2602
+ - type: max_f1
2603
+ value: 77.13677607258877
2604
  ---
2605
 
2606
+ # bge-micro-v2
2607
 
2608
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.
2609
 
2610
+ Distilled in a 2-step training process (bge-micro was step 1) from `BAAI/bge-small-en-v1.5`.
2611
 
2612
  ## Usage (Sentence-Transformers)
2613