plip commited on
Commit
8604ebf
1 Parent(s): 3ee2e5b

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +557 -1
README.md CHANGED
@@ -1,3 +1,559 @@
1
  ---
2
- license: apache-2.0
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ tags:
3
+ - generated_from_trainer
4
+ model-index:
5
+ - name: pixel-small-wlr
6
+ results: []
7
  ---
8
+
9
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
10
+ should probably proofread and complete it, then remove this comment. -->
11
+
12
+ # pixel-small-wlr
13
+
14
+ This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset.
15
+ It achieves the following results on the evaluation set:
16
+ - Loss: 0.8054
17
+
18
+ ## Model description
19
+
20
+ More information needed
21
+
22
+ ## Intended uses & limitations
23
+
24
+ More information needed
25
+
26
+ ## Training and evaluation data
27
+
28
+ More information needed
29
+
30
+ ## Training procedure
31
+
32
+ ### Training hyperparameters
33
+
34
+ The following hyperparameters were used during training:
35
+ - learning_rate: 0.0003
36
+ - train_batch_size: 64
37
+ - eval_batch_size: 8
38
+ - seed: 42
39
+ - distributed_type: multi-GPU
40
+ - num_devices: 8
41
+ - total_train_batch_size: 512
42
+ - total_eval_batch_size: 64
43
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
+ - lr_scheduler_type: cosine
45
+ - lr_scheduler_warmup_ratio: 0.05
46
+ - training_steps: 500000
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss |
51
+ |:-------------:|:-----:|:------:|:---------------:|
52
+ | 0.7216 | 0.03 | 1000 | 0.9141 |
53
+ | 0.7114 | 0.05 | 2000 | 0.9156 |
54
+ | 0.711 | 0.08 | 3000 | 0.9157 |
55
+ | 0.7102 | 0.1 | 4000 | 0.8821 |
56
+ | 0.709 | 0.13 | 5000 | 0.8774 |
57
+ | 0.7083 | 0.15 | 6000 | 0.8945 |
58
+ | 0.6516 | 0.18 | 7000 | 0.8945 |
59
+ | 0.6042 | 0.2 | 8000 | 0.8856 |
60
+ | 0.5732 | 0.23 | 9000 | 0.8907 |
61
+ | 0.5506 | 0.25 | 10000 | 0.8922 |
62
+ | 0.5385 | 0.28 | 11000 | 0.8904 |
63
+ | 0.5276 | 0.31 | 12000 | 0.8865 |
64
+ | 0.517 | 0.33 | 13000 | 0.8837 |
65
+ | 0.5077 | 0.36 | 14000 | 0.8863 |
66
+ | 0.498 | 0.38 | 15000 | 0.8770 |
67
+ | 0.4897 | 0.41 | 16000 | 0.8794 |
68
+ | 0.4791 | 0.43 | 17000 | 0.8796 |
69
+ | 0.4698 | 0.46 | 18000 | 0.8754 |
70
+ | 0.4592 | 0.48 | 19000 | 0.8825 |
71
+ | 0.4489 | 0.51 | 20000 | 0.8787 |
72
+ | 0.439 | 0.54 | 21000 | 0.8742 |
73
+ | 0.4292 | 0.56 | 22000 | 0.8849 |
74
+ | 0.4212 | 0.59 | 23000 | 0.8842 |
75
+ | 0.4142 | 0.61 | 24000 | 0.8812 |
76
+ | 0.4076 | 0.64 | 25000 | 0.8659 |
77
+ | 0.4017 | 0.66 | 26000 | 0.8744 |
78
+ | 0.3958 | 0.69 | 27000 | 0.8822 |
79
+ | 0.3907 | 0.71 | 28000 | 0.8762 |
80
+ | 0.3863 | 0.74 | 29000 | 0.8758 |
81
+ | 0.382 | 0.76 | 30000 | 0.8755 |
82
+ | 0.378 | 0.79 | 31000 | 0.8781 |
83
+ | 0.3748 | 0.82 | 32000 | 0.8815 |
84
+ | 0.3716 | 0.84 | 33000 | 0.8689 |
85
+ | 0.3689 | 0.87 | 34000 | 0.8759 |
86
+ | 0.3665 | 0.89 | 35000 | 0.8690 |
87
+ | 0.364 | 0.92 | 36000 | 0.8696 |
88
+ | 0.3614 | 0.94 | 37000 | 0.8684 |
89
+ | 0.3592 | 0.97 | 38000 | 0.8598 |
90
+ | 0.3571 | 0.99 | 39000 | 0.8572 |
91
+ | 0.3555 | 1.02 | 40000 | 0.8637 |
92
+ | 0.3535 | 1.04 | 41000 | 0.8638 |
93
+ | 0.3518 | 1.07 | 42000 | 0.8665 |
94
+ | 0.3502 | 1.1 | 43000 | 0.8559 |
95
+ | 0.3488 | 1.12 | 44000 | 0.8600 |
96
+ | 0.3469 | 1.15 | 45000 | 0.8528 |
97
+ | 0.3459 | 1.17 | 46000 | 0.8598 |
98
+ | 0.3444 | 1.2 | 47000 | 0.8607 |
99
+ | 0.3428 | 1.22 | 48000 | 0.8650 |
100
+ | 0.342 | 1.25 | 49000 | 0.8640 |
101
+ | 0.3408 | 1.27 | 50000 | 0.8549 |
102
+ | 0.3398 | 1.3 | 51000 | 0.8630 |
103
+ | 0.3387 | 1.33 | 52000 | 0.8541 |
104
+ | 0.3373 | 1.35 | 53000 | 0.8588 |
105
+ | 0.3368 | 1.38 | 54000 | 0.8639 |
106
+ | 0.3357 | 1.4 | 55000 | 0.8546 |
107
+ | 0.335 | 1.43 | 56000 | 0.8535 |
108
+ | 0.334 | 1.45 | 57000 | 0.8511 |
109
+ | 0.333 | 1.48 | 58000 | 0.8525 |
110
+ | 0.3322 | 1.5 | 59000 | 0.8536 |
111
+ | 0.3314 | 1.53 | 60000 | 0.8422 |
112
+ | 0.3307 | 1.55 | 61000 | 0.8627 |
113
+ | 0.3298 | 1.58 | 62000 | 0.8435 |
114
+ | 0.3292 | 1.61 | 63000 | 0.8569 |
115
+ | 0.3287 | 1.63 | 64000 | 0.8517 |
116
+ | 0.3278 | 1.66 | 65000 | 0.8488 |
117
+ | 0.3269 | 1.68 | 66000 | 0.8470 |
118
+ | 0.3262 | 1.71 | 67000 | 0.8487 |
119
+ | 0.3257 | 1.73 | 68000 | 0.8430 |
120
+ | 0.325 | 1.76 | 69000 | 0.8382 |
121
+ | 0.3248 | 1.78 | 70000 | 0.8480 |
122
+ | 0.3238 | 1.81 | 71000 | 0.8432 |
123
+ | 0.3235 | 1.83 | 72000 | 0.8572 |
124
+ | 0.3227 | 1.86 | 73000 | 0.8466 |
125
+ | 0.3224 | 1.89 | 74000 | 0.8524 |
126
+ | 0.3217 | 1.91 | 75000 | 0.8451 |
127
+ | 0.321 | 1.94 | 76000 | 0.8453 |
128
+ | 0.3207 | 1.96 | 77000 | 0.8389 |
129
+ | 0.3202 | 1.99 | 78000 | 0.8391 |
130
+ | 0.3195 | 2.01 | 79000 | 0.8535 |
131
+ | 0.3194 | 2.04 | 80000 | 0.8578 |
132
+ | 0.3194 | 2.06 | 81000 | 0.8517 |
133
+ | 0.3185 | 2.09 | 82000 | 0.8537 |
134
+ | 0.3183 | 2.12 | 83000 | 0.8353 |
135
+ | 0.3177 | 2.14 | 84000 | 0.8457 |
136
+ | 0.3174 | 2.17 | 85000 | 0.8515 |
137
+ | 0.3165 | 2.19 | 86000 | 0.8357 |
138
+ | 0.3164 | 2.22 | 87000 | 0.8555 |
139
+ | 0.3159 | 2.24 | 88000 | 0.8426 |
140
+ | 0.3159 | 2.27 | 89000 | 0.8529 |
141
+ | 0.3152 | 2.29 | 90000 | 0.8297 |
142
+ | 0.3149 | 2.32 | 91000 | 0.8462 |
143
+ | 0.3144 | 2.34 | 92000 | 0.8435 |
144
+ | 0.3141 | 2.37 | 93000 | 0.8363 |
145
+ | 0.3139 | 2.4 | 94000 | 0.8435 |
146
+ | 0.3139 | 2.42 | 95000 | 0.8472 |
147
+ | 0.3131 | 2.45 | 96000 | 0.8396 |
148
+ | 0.3125 | 2.47 | 97000 | 0.8420 |
149
+ | 0.3128 | 2.5 | 98000 | 0.8410 |
150
+ | 0.3121 | 2.52 | 99000 | 0.8418 |
151
+ | 0.3118 | 2.55 | 100000 | 0.8400 |
152
+ | 0.3112 | 2.57 | 101000 | 0.8347 |
153
+ | 0.3112 | 2.6 | 102000 | 0.8289 |
154
+ | 0.3112 | 2.63 | 103000 | 0.8456 |
155
+ | 0.3107 | 2.65 | 104000 | 0.8414 |
156
+ | 0.3101 | 2.68 | 105000 | 0.8327 |
157
+ | 0.3107 | 2.7 | 106000 | 0.8374 |
158
+ | 0.3103 | 2.73 | 107000 | 0.8471 |
159
+ | 0.3095 | 2.75 | 108000 | 0.8452 |
160
+ | 0.3094 | 2.78 | 109000 | 0.8513 |
161
+ | 0.3094 | 2.8 | 110000 | 0.8348 |
162
+ | 0.3089 | 2.83 | 111000 | 0.8334 |
163
+ | 0.3089 | 2.85 | 112000 | 0.8438 |
164
+ | 0.3088 | 2.88 | 113000 | 0.8328 |
165
+ | 0.3085 | 2.91 | 114000 | 0.8317 |
166
+ | 0.3097 | 2.93 | 115000 | 0.8462 |
167
+ | 0.3082 | 2.96 | 116000 | 0.8436 |
168
+ | 0.3077 | 2.98 | 117000 | 0.8436 |
169
+ | 0.3086 | 3.01 | 118000 | 0.8483 |
170
+ | 0.3072 | 3.03 | 119000 | 0.8355 |
171
+ | 0.3066 | 3.06 | 120000 | 0.8281 |
172
+ | 0.3072 | 3.08 | 121000 | 0.8393 |
173
+ | 0.3063 | 3.11 | 122000 | 0.8436 |
174
+ | 0.3061 | 3.13 | 123000 | 0.8346 |
175
+ | 0.3059 | 3.16 | 124000 | 0.8408 |
176
+ | 0.3062 | 3.19 | 125000 | 0.8384 |
177
+ | 0.307 | 3.21 | 126000 | 0.8374 |
178
+ | 0.3056 | 3.24 | 127000 | 0.8240 |
179
+ | 0.3049 | 3.26 | 128000 | 0.8263 |
180
+ | 0.3068 | 3.29 | 129000 | 0.8301 |
181
+ | 0.3053 | 3.31 | 130000 | 0.8350 |
182
+ | 0.3048 | 3.34 | 131000 | 0.8295 |
183
+ | 0.3051 | 3.36 | 132000 | 0.8297 |
184
+ | 0.3045 | 3.39 | 133000 | 0.8295 |
185
+ | 0.3043 | 3.42 | 134000 | 0.8245 |
186
+ | 0.3037 | 3.44 | 135000 | 0.8189 |
187
+ | 0.3042 | 3.47 | 136000 | 0.8286 |
188
+ | 0.3038 | 3.49 | 137000 | 0.8326 |
189
+ | 0.3033 | 3.52 | 138000 | 0.8184 |
190
+ | 0.3035 | 3.54 | 139000 | 0.8136 |
191
+ | 0.3027 | 3.57 | 140000 | 0.8287 |
192
+ | 0.303 | 3.59 | 141000 | 0.8184 |
193
+ | 0.3027 | 3.62 | 142000 | 0.8444 |
194
+ | 0.3024 | 3.64 | 143000 | 0.8402 |
195
+ | 0.3027 | 3.67 | 144000 | 0.8280 |
196
+ | 0.3029 | 3.7 | 145000 | 0.8255 |
197
+ | 0.3023 | 3.72 | 146000 | 0.8287 |
198
+ | 0.3024 | 3.75 | 147000 | 0.8176 |
199
+ | 0.302 | 3.77 | 148000 | 0.8372 |
200
+ | 0.3019 | 3.8 | 149000 | 0.8221 |
201
+ | 0.3016 | 3.82 | 150000 | 0.8251 |
202
+ | 0.3014 | 3.85 | 151000 | 0.8370 |
203
+ | 0.3012 | 3.87 | 152000 | 0.8285 |
204
+ | 0.3012 | 3.9 | 153000 | 0.8453 |
205
+ | 0.3007 | 3.92 | 154000 | 0.8195 |
206
+ | 0.3009 | 3.95 | 155000 | 0.8309 |
207
+ | 0.3007 | 3.98 | 156000 | 0.8357 |
208
+ | 0.3003 | 4.0 | 157000 | 0.8225 |
209
+ | 0.3014 | 4.03 | 158000 | 0.8343 |
210
+ | 0.3005 | 4.05 | 159000 | 0.8267 |
211
+ | 0.2994 | 4.08 | 160000 | 0.8258 |
212
+ | 0.2996 | 4.1 | 161000 | 0.8267 |
213
+ | 0.301 | 4.13 | 162000 | 0.8216 |
214
+ | 0.2987 | 4.15 | 163000 | 0.8304 |
215
+ | 0.2989 | 4.18 | 164000 | 0.8385 |
216
+ | 0.2995 | 4.21 | 165000 | 0.8305 |
217
+ | 0.2998 | 4.23 | 166000 | 0.8391 |
218
+ | 0.2991 | 4.26 | 167000 | 0.8364 |
219
+ | 0.2994 | 4.28 | 168000 | 0.8259 |
220
+ | 0.2977 | 4.31 | 169000 | 0.8347 |
221
+ | 0.2989 | 4.33 | 170000 | 0.8346 |
222
+ | 0.2997 | 4.36 | 171000 | 0.8418 |
223
+ | 0.2975 | 4.38 | 172000 | 0.8321 |
224
+ | 0.2988 | 4.41 | 173000 | 0.8193 |
225
+ | 0.2979 | 4.43 | 174000 | 0.8213 |
226
+ | 0.2973 | 4.46 | 175000 | 0.8220 |
227
+ | 0.2967 | 4.49 | 176000 | 0.8286 |
228
+ | 0.2969 | 4.51 | 177000 | 0.8219 |
229
+ | 0.2966 | 4.54 | 178000 | 0.8279 |
230
+ | 0.2966 | 4.56 | 179000 | 0.8254 |
231
+ | 0.2968 | 4.59 | 180000 | 0.8309 |
232
+ | 0.2962 | 4.61 | 181000 | 0.8313 |
233
+ | 0.2968 | 4.64 | 182000 | 0.8232 |
234
+ | 0.2967 | 4.66 | 183000 | 0.8215 |
235
+ | 0.2958 | 4.69 | 184000 | 0.8171 |
236
+ | 0.2958 | 4.71 | 185000 | 0.8280 |
237
+ | 0.2958 | 4.74 | 186000 | 0.8222 |
238
+ | 0.2958 | 4.77 | 187000 | 0.8303 |
239
+ | 0.2965 | 4.79 | 188000 | 0.8213 |
240
+ | 0.2958 | 4.82 | 189000 | 0.8167 |
241
+ | 0.297 | 4.84 | 190000 | 0.8272 |
242
+ | 0.2959 | 4.87 | 191000 | 0.8258 |
243
+ | 0.295 | 4.89 | 192000 | 0.8217 |
244
+ | 0.295 | 4.92 | 193000 | 0.8130 |
245
+ | 0.2968 | 4.94 | 194000 | 0.8097 |
246
+ | 0.2947 | 4.97 | 195000 | 0.8070 |
247
+ | 0.2941 | 5.0 | 196000 | 0.8227 |
248
+ | 0.294 | 5.02 | 197000 | 0.8133 |
249
+ | 0.2947 | 5.05 | 198000 | 0.8142 |
250
+ | 0.2941 | 5.07 | 199000 | 0.8159 |
251
+ | 0.294 | 5.1 | 200000 | 0.8274 |
252
+ | 0.2941 | 5.12 | 201000 | 0.8195 |
253
+ | 0.2938 | 5.15 | 202000 | 0.8285 |
254
+ | 0.2934 | 5.17 | 203000 | 0.8159 |
255
+ | 0.2932 | 5.2 | 204000 | 0.8073 |
256
+ | 0.2946 | 5.22 | 205000 | 0.8255 |
257
+ | 0.2939 | 5.25 | 206000 | 0.8250 |
258
+ | 0.2933 | 5.28 | 207000 | 0.8215 |
259
+ | 0.2927 | 5.3 | 208000 | 0.8153 |
260
+ | 0.2931 | 5.33 | 209000 | 0.8284 |
261
+ | 0.2928 | 5.35 | 210000 | 0.8204 |
262
+ | 0.2923 | 5.38 | 211000 | 0.8265 |
263
+ | 0.2925 | 5.4 | 212000 | 0.8269 |
264
+ | 0.2926 | 5.43 | 213000 | 0.8337 |
265
+ | 0.292 | 5.45 | 214000 | 0.8255 |
266
+ | 0.292 | 5.48 | 215000 | 0.8224 |
267
+ | 0.2915 | 5.5 | 216000 | 0.8217 |
268
+ | 0.2916 | 5.53 | 217000 | 0.8251 |
269
+ | 0.291 | 5.56 | 218000 | 0.8244 |
270
+ | 0.2918 | 5.58 | 219000 | 0.8229 |
271
+ | 0.2911 | 5.61 | 220000 | 0.8245 |
272
+ | 0.2911 | 5.63 | 221000 | 0.8201 |
273
+ | 0.2913 | 5.66 | 222000 | 0.8082 |
274
+ | 0.2912 | 5.68 | 223000 | 0.8194 |
275
+ | 0.2908 | 5.71 | 224000 | 0.8260 |
276
+ | 0.291 | 5.73 | 225000 | 0.8226 |
277
+ | 0.2908 | 5.76 | 226000 | 0.8231 |
278
+ | 0.2903 | 5.79 | 227000 | 0.8101 |
279
+ | 0.2917 | 5.81 | 228000 | 0.8148 |
280
+ | 0.2915 | 5.84 | 229000 | 0.8212 |
281
+ | 0.2901 | 5.86 | 230000 | 0.8126 |
282
+ | 0.2898 | 5.89 | 231000 | 0.8182 |
283
+ | 0.29 | 5.91 | 232000 | 0.8150 |
284
+ | 0.2905 | 5.94 | 233000 | 0.8126 |
285
+ | 0.2894 | 5.96 | 234000 | 0.8208 |
286
+ | 0.2894 | 5.99 | 235000 | 0.8262 |
287
+ | 0.2899 | 6.01 | 236000 | 0.8133 |
288
+ | 0.2891 | 6.04 | 237000 | 0.8039 |
289
+ | 0.2887 | 6.07 | 238000 | 0.8182 |
290
+ | 0.2889 | 6.09 | 239000 | 0.8066 |
291
+ | 0.2889 | 6.12 | 240000 | 0.8129 |
292
+ | 0.2899 | 6.14 | 241000 | 0.8204 |
293
+ | 0.2894 | 6.17 | 242000 | 0.8142 |
294
+ | 0.2893 | 6.19 | 243000 | 0.8167 |
295
+ | 0.2883 | 6.22 | 244000 | 0.8152 |
296
+ | 0.2882 | 6.24 | 245000 | 0.8129 |
297
+ | 0.2883 | 6.27 | 246000 | 0.8146 |
298
+ | 0.2886 | 6.29 | 247000 | 0.8157 |
299
+ | 0.2886 | 6.32 | 248000 | 0.8172 |
300
+ | 0.2885 | 6.35 | 249000 | 0.8210 |
301
+ | 0.2886 | 6.37 | 250000 | 0.8213 |
302
+ | 0.2877 | 6.4 | 251000 | 0.8104 |
303
+ | 0.2872 | 6.42 | 252000 | 0.8114 |
304
+ | 0.2871 | 6.45 | 253000 | 0.8148 |
305
+ | 0.2875 | 6.47 | 254000 | 0.8127 |
306
+ | 0.287 | 6.5 | 255000 | 0.8201 |
307
+ | 0.2869 | 6.52 | 256000 | 0.8101 |
308
+ | 0.2868 | 6.55 | 257000 | 0.8142 |
309
+ | 0.2869 | 6.58 | 258000 | 0.8158 |
310
+ | 0.2868 | 6.6 | 259000 | 0.8125 |
311
+ | 0.2865 | 6.63 | 260000 | 0.8167 |
312
+ | 0.2871 | 6.65 | 261000 | 0.8194 |
313
+ | 0.2863 | 6.68 | 262000 | 0.8059 |
314
+ | 0.2864 | 6.7 | 263000 | 0.8195 |
315
+ | 0.2863 | 6.73 | 264000 | 0.8099 |
316
+ | 0.2868 | 6.75 | 265000 | 0.8127 |
317
+ | 0.2863 | 6.78 | 266000 | 0.8069 |
318
+ | 0.2854 | 6.8 | 267000 | 0.8033 |
319
+ | 0.2855 | 6.83 | 268000 | 0.8097 |
320
+ | 0.2864 | 6.86 | 269000 | 0.8096 |
321
+ | 0.2865 | 6.88 | 270000 | 0.8194 |
322
+ | 0.2852 | 6.91 | 271000 | 0.8104 |
323
+ | 0.2852 | 6.93 | 272000 | 0.8214 |
324
+ | 0.2848 | 6.96 | 273000 | 0.8105 |
325
+ | 0.2857 | 6.98 | 274000 | 0.8124 |
326
+ | 0.2849 | 7.01 | 275000 | 0.8164 |
327
+ | 0.2848 | 7.03 | 276000 | 0.8183 |
328
+ | 0.2847 | 7.06 | 277000 | 0.8188 |
329
+ | 0.2846 | 7.08 | 278000 | 0.8136 |
330
+ | 0.2847 | 7.11 | 279000 | 0.8129 |
331
+ | 0.2845 | 7.14 | 280000 | 0.8166 |
332
+ | 0.2836 | 7.16 | 281000 | 0.8175 |
333
+ | 0.2839 | 7.19 | 282000 | 0.8130 |
334
+ | 0.284 | 7.21 | 283000 | 0.8058 |
335
+ | 0.2839 | 7.24 | 284000 | 0.8161 |
336
+ | 0.2842 | 7.26 | 285000 | 0.8232 |
337
+ | 0.2835 | 7.29 | 286000 | 0.8186 |
338
+ | 0.2837 | 7.31 | 287000 | 0.8180 |
339
+ | 0.2835 | 7.34 | 288000 | 0.8165 |
340
+ | 0.2835 | 7.37 | 289000 | 0.8122 |
341
+ | 0.2832 | 7.39 | 290000 | 0.8192 |
342
+ | 0.2829 | 7.42 | 291000 | 0.8085 |
343
+ | 0.2827 | 7.44 | 292000 | 0.8086 |
344
+ | 0.2829 | 7.47 | 293000 | 0.8102 |
345
+ | 0.2829 | 7.49 | 294000 | 0.8082 |
346
+ | 0.2828 | 7.52 | 295000 | 0.8098 |
347
+ | 0.2828 | 7.54 | 296000 | 0.8034 |
348
+ | 0.2831 | 7.57 | 297000 | 0.8072 |
349
+ | 0.2825 | 7.59 | 298000 | 0.8063 |
350
+ | 0.282 | 7.62 | 299000 | 0.8125 |
351
+ | 0.2823 | 7.65 | 300000 | 0.8154 |
352
+ | 0.2818 | 7.67 | 301000 | 0.8139 |
353
+ | 0.2818 | 7.7 | 302000 | 0.8098 |
354
+ | 0.2826 | 7.72 | 303000 | 0.8181 |
355
+ | 0.2825 | 7.75 | 304000 | 0.8146 |
356
+ | 0.2813 | 7.77 | 305000 | 0.8216 |
357
+ | 0.2814 | 7.8 | 306000 | 0.8134 |
358
+ | 0.2808 | 7.82 | 307000 | 0.8111 |
359
+ | 0.2808 | 7.85 | 308000 | 0.8111 |
360
+ | 0.2811 | 7.88 | 309000 | 0.8077 |
361
+ | 0.2812 | 7.9 | 310000 | 0.8111 |
362
+ | 0.281 | 7.93 | 311000 | 0.8070 |
363
+ | 0.2807 | 7.95 | 312000 | 0.8041 |
364
+ | 0.2811 | 7.98 | 313000 | 0.8100 |
365
+ | 0.2821 | 8.0 | 314000 | 0.8284 |
366
+ | 0.2808 | 8.03 | 315000 | 0.8073 |
367
+ | 0.2805 | 8.05 | 316000 | 0.8141 |
368
+ | 0.2801 | 8.08 | 317000 | 0.8067 |
369
+ | 0.28 | 8.1 | 318000 | 0.8123 |
370
+ | 0.2802 | 8.13 | 319000 | 0.8078 |
371
+ | 0.2799 | 8.16 | 320000 | 0.8211 |
372
+ | 0.28 | 8.18 | 321000 | 0.8135 |
373
+ | 0.2796 | 8.21 | 322000 | 0.8164 |
374
+ | 0.2793 | 8.23 | 323000 | 0.8119 |
375
+ | 0.2791 | 8.26 | 324000 | 0.8065 |
376
+ | 0.2793 | 8.28 | 325000 | 0.8142 |
377
+ | 0.2794 | 8.31 | 326000 | 0.8038 |
378
+ | 0.2792 | 8.33 | 327000 | 0.8117 |
379
+ | 0.2789 | 8.36 | 328000 | 0.8118 |
380
+ | 0.2793 | 8.38 | 329000 | 0.8092 |
381
+ | 0.279 | 8.41 | 330000 | 0.8081 |
382
+ | 0.2792 | 8.44 | 331000 | 0.8179 |
383
+ | 0.2788 | 8.46 | 332000 | 0.8141 |
384
+ | 0.2785 | 8.49 | 333000 | 0.8112 |
385
+ | 0.2786 | 8.51 | 334000 | 0.8080 |
386
+ | 0.2788 | 8.54 | 335000 | 0.8106 |
387
+ | 0.279 | 8.56 | 336000 | 0.8106 |
388
+ | 0.2781 | 8.59 | 337000 | 0.8100 |
389
+ | 0.278 | 8.61 | 338000 | 0.8252 |
390
+ | 0.2777 | 8.64 | 339000 | 0.8137 |
391
+ | 0.2778 | 8.67 | 340000 | 0.8187 |
392
+ | 0.2773 | 8.69 | 341000 | 0.8103 |
393
+ | 0.2779 | 8.72 | 342000 | 0.8094 |
394
+ | 0.2777 | 8.74 | 343000 | 0.8024 |
395
+ | 0.277 | 8.77 | 344000 | 0.8033 |
396
+ | 0.2771 | 8.79 | 345000 | 0.8085 |
397
+ | 0.2773 | 8.82 | 346000 | 0.8130 |
398
+ | 0.2775 | 8.84 | 347000 | 0.8052 |
399
+ | 0.2769 | 8.87 | 348000 | 0.8048 |
400
+ | 0.2769 | 8.89 | 349000 | 0.8069 |
401
+ | 0.2774 | 8.92 | 350000 | 0.8126 |
402
+ | 0.2766 | 8.95 | 351000 | 0.8036 |
403
+ | 0.2765 | 8.97 | 352000 | 0.8100 |
404
+ | 0.2762 | 9.0 | 353000 | 0.8091 |
405
+ | 0.2765 | 9.02 | 354000 | 0.8081 |
406
+ | 0.2763 | 9.05 | 355000 | 0.8072 |
407
+ | 0.2763 | 9.07 | 356000 | 0.8050 |
408
+ | 0.2763 | 9.1 | 357000 | 0.8132 |
409
+ | 0.2758 | 9.12 | 358000 | 0.8092 |
410
+ | 0.2758 | 9.15 | 359000 | 0.8033 |
411
+ | 0.2757 | 9.17 | 360000 | 0.8122 |
412
+ | 0.2757 | 9.2 | 361000 | 0.8061 |
413
+ | 0.2754 | 9.23 | 362000 | 0.8106 |
414
+ | 0.2755 | 9.25 | 363000 | 0.8048 |
415
+ | 0.2753 | 9.28 | 364000 | 0.8104 |
416
+ | 0.2753 | 9.3 | 365000 | 0.8095 |
417
+ | 0.2753 | 9.33 | 366000 | 0.8097 |
418
+ | 0.2752 | 9.35 | 367000 | 0.8090 |
419
+ | 0.2749 | 9.38 | 368000 | 0.8059 |
420
+ | 0.2749 | 9.4 | 369000 | 0.8114 |
421
+ | 0.2747 | 9.43 | 370000 | 0.8089 |
422
+ | 0.2745 | 9.46 | 371000 | 0.8080 |
423
+ | 0.2745 | 9.48 | 372000 | 0.8102 |
424
+ | 0.2747 | 9.51 | 373000 | 0.8059 |
425
+ | 0.2742 | 9.53 | 374000 | 0.8085 |
426
+ | 0.2742 | 9.56 | 375000 | 0.8031 |
427
+ | 0.274 | 9.58 | 376000 | 0.8067 |
428
+ | 0.274 | 9.61 | 377000 | 0.8057 |
429
+ | 0.274 | 9.63 | 378000 | 0.8031 |
430
+ | 0.2738 | 9.66 | 379000 | 0.8067 |
431
+ | 0.2737 | 9.68 | 380000 | 0.8090 |
432
+ | 0.2736 | 9.71 | 381000 | 0.8044 |
433
+ | 0.2739 | 9.74 | 382000 | 0.8078 |
434
+ | 0.2729 | 9.76 | 383000 | 0.8075 |
435
+ | 0.2735 | 9.79 | 384000 | 0.8107 |
436
+ | 0.2729 | 9.81 | 385000 | 0.8120 |
437
+ | 0.2731 | 9.84 | 386000 | 0.8059 |
438
+ | 0.2727 | 9.86 | 387000 | 0.8082 |
439
+ | 0.2726 | 9.89 | 388000 | 0.8090 |
440
+ | 0.2727 | 9.91 | 389000 | 0.8020 |
441
+ | 0.273 | 9.94 | 390000 | 0.8115 |
442
+ | 0.2727 | 9.96 | 391000 | 0.8077 |
443
+ | 0.2726 | 9.99 | 392000 | 0.8175 |
444
+ | 0.2722 | 10.02 | 393000 | 0.8073 |
445
+ | 0.2725 | 10.04 | 394000 | 0.8089 |
446
+ | 0.2721 | 10.07 | 395000 | 0.8181 |
447
+ | 0.2722 | 10.09 | 396000 | 0.8067 |
448
+ | 0.2721 | 10.12 | 397000 | 0.8155 |
449
+ | 0.2718 | 10.14 | 398000 | 0.8150 |
450
+ | 0.272 | 10.17 | 399000 | 0.8131 |
451
+ | 0.2721 | 10.19 | 400000 | 0.8092 |
452
+ | 0.2715 | 10.22 | 401000 | 0.8083 |
453
+ | 0.2717 | 10.25 | 402000 | 0.8100 |
454
+ | 0.2715 | 10.27 | 403000 | 0.8108 |
455
+ | 0.2715 | 10.3 | 404000 | 0.8090 |
456
+ | 0.2716 | 10.32 | 405000 | 0.8160 |
457
+ | 0.2712 | 10.35 | 406000 | 0.8142 |
458
+ | 0.2712 | 10.37 | 407000 | 0.8071 |
459
+ | 0.2712 | 10.4 | 408000 | 0.8115 |
460
+ | 0.2709 | 10.42 | 409000 | 0.8093 |
461
+ | 0.271 | 10.45 | 410000 | 0.8109 |
462
+ | 0.2712 | 10.47 | 411000 | 0.8162 |
463
+ | 0.2709 | 10.5 | 412000 | 0.8158 |
464
+ | 0.2706 | 10.53 | 413000 | 0.8103 |
465
+ | 0.2709 | 10.55 | 414000 | 0.8069 |
466
+ | 0.2706 | 10.58 | 415000 | 0.8130 |
467
+ | 0.2706 | 10.6 | 416000 | 0.8126 |
468
+ | 0.2704 | 10.63 | 417000 | 0.8181 |
469
+ | 0.2704 | 10.65 | 418000 | 0.8100 |
470
+ | 0.2702 | 10.68 | 419000 | 0.8089 |
471
+ | 0.2702 | 10.7 | 420000 | 0.8133 |
472
+ | 0.2699 | 10.73 | 421000 | 0.8155 |
473
+ | 0.2701 | 10.75 | 422000 | 0.8139 |
474
+ | 0.2701 | 10.78 | 423000 | 0.8133 |
475
+ | 0.2701 | 10.81 | 424000 | 0.8100 |
476
+ | 0.2696 | 10.83 | 425000 | 0.8077 |
477
+ | 0.2696 | 10.86 | 426000 | 0.8097 |
478
+ | 0.2698 | 10.88 | 427000 | 0.8036 |
479
+ | 0.2698 | 10.91 | 428000 | 0.8067 |
480
+ | 0.2699 | 10.93 | 429000 | 0.8131 |
481
+ | 0.2695 | 10.96 | 430000 | 0.8059 |
482
+ | 0.2695 | 10.98 | 431000 | 0.8142 |
483
+ | 0.2693 | 11.01 | 432000 | 0.8080 |
484
+ | 0.2695 | 11.04 | 433000 | 0.8101 |
485
+ | 0.2692 | 11.06 | 434000 | 0.8111 |
486
+ | 0.2693 | 11.09 | 435000 | 0.8064 |
487
+ | 0.2689 | 11.11 | 436000 | 0.8066 |
488
+ | 0.2688 | 11.14 | 437000 | 0.8145 |
489
+ | 0.2691 | 11.16 | 438000 | 0.8088 |
490
+ | 0.2689 | 11.19 | 439000 | 0.8115 |
491
+ | 0.2688 | 11.21 | 440000 | 0.8066 |
492
+ | 0.2689 | 11.24 | 441000 | 0.8038 |
493
+ | 0.2687 | 11.26 | 442000 | 0.8066 |
494
+ | 0.2688 | 11.29 | 443000 | 0.8125 |
495
+ | 0.2686 | 11.32 | 444000 | 0.8055 |
496
+ | 0.2686 | 11.34 | 445000 | 0.8065 |
497
+ | 0.2685 | 11.37 | 446000 | 0.8134 |
498
+ | 0.2684 | 11.39 | 447000 | 0.8068 |
499
+ | 0.2683 | 11.42 | 448000 | 0.8086 |
500
+ | 0.2684 | 11.44 | 449000 | 0.8025 |
501
+ | 0.2682 | 11.47 | 450000 | 0.8073 |
502
+ | 0.2682 | 11.49 | 451000 | 0.8042 |
503
+ | 0.2683 | 11.52 | 452000 | 0.8097 |
504
+ | 0.2678 | 11.54 | 453000 | 0.8062 |
505
+ | 0.2678 | 11.57 | 454000 | 0.8084 |
506
+ | 0.2681 | 11.6 | 455000 | 0.8135 |
507
+ | 0.2678 | 11.62 | 456000 | 0.8098 |
508
+ | 0.2681 | 11.65 | 457000 | 0.8079 |
509
+ | 0.2679 | 11.67 | 458000 | 0.8052 |
510
+ | 0.268 | 11.7 | 459000 | 0.8038 |
511
+ | 0.268 | 11.72 | 460000 | 0.8100 |
512
+ | 0.2677 | 11.75 | 461000 | 0.8057 |
513
+ | 0.2676 | 11.77 | 462000 | 0.8142 |
514
+ | 0.2679 | 11.8 | 463000 | 0.8076 |
515
+ | 0.2676 | 11.83 | 464000 | 0.8087 |
516
+ | 0.2677 | 11.85 | 465000 | 0.8066 |
517
+ | 0.2673 | 11.88 | 466000 | 0.8059 |
518
+ | 0.2676 | 11.9 | 467000 | 0.8067 |
519
+ | 0.2675 | 11.93 | 468000 | 0.8043 |
520
+ | 0.2675 | 11.95 | 469000 | 0.8103 |
521
+ | 0.2673 | 11.98 | 470000 | 0.8092 |
522
+ | 0.2676 | 12.0 | 471000 | 0.8069 |
523
+ | 0.2673 | 12.03 | 472000 | 0.8062 |
524
+ | 0.2673 | 12.05 | 473000 | 0.8025 |
525
+ | 0.2672 | 12.08 | 474000 | 0.8044 |
526
+ | 0.2671 | 12.11 | 475000 | 0.8068 |
527
+ | 0.2672 | 12.13 | 476000 | 0.8039 |
528
+ | 0.2673 | 12.16 | 477000 | 0.8078 |
529
+ | 0.2671 | 12.18 | 478000 | 0.8061 |
530
+ | 0.2673 | 12.21 | 479000 | 0.8022 |
531
+ | 0.267 | 12.23 | 480000 | 0.8065 |
532
+ | 0.2672 | 12.26 | 481000 | 0.8035 |
533
+ | 0.267 | 12.28 | 482000 | 0.8039 |
534
+ | 0.2669 | 12.31 | 483000 | 0.8074 |
535
+ | 0.267 | 12.33 | 484000 | 0.8040 |
536
+ | 0.267 | 12.36 | 485000 | 0.8028 |
537
+ | 0.2668 | 12.39 | 486000 | 0.8055 |
538
+ | 0.2669 | 12.41 | 487000 | 0.8062 |
539
+ | 0.2669 | 12.44 | 488000 | 0.8053 |
540
+ | 0.267 | 12.46 | 489000 | 0.8089 |
541
+ | 0.267 | 12.49 | 490000 | 0.8081 |
542
+ | 0.267 | 12.51 | 491000 | 0.8053 |
543
+ | 0.2668 | 12.54 | 492000 | 0.8053 |
544
+ | 0.2671 | 12.56 | 493000 | 0.8097 |
545
+ | 0.267 | 12.59 | 494000 | 0.8088 |
546
+ | 0.2669 | 12.62 | 495000 | 0.8081 |
547
+ | 0.2667 | 12.64 | 496000 | 0.8047 |
548
+ | 0.2667 | 12.67 | 497000 | 0.8043 |
549
+ | 0.2669 | 12.69 | 498000 | 0.8051 |
550
+ | 0.2669 | 12.72 | 499000 | 0.8085 |
551
+ | 0.2666 | 12.74 | 500000 | 0.8054 |
552
+
553
+
554
+ ### Framework versions
555
+
556
+ - Transformers 4.17.0
557
+ - Pytorch 1.11.0
558
+ - Datasets 2.5.0
559
+ - Tokenizers 0.12.1