--- library_name: transformers license: mit base_model: microsoft/speecht5_tts tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_17_0 model-index: - name: Hindi_SpeechT5_finetuned results: [] language: - hi --- # Hindi_SpeechT5_finetuned This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the Validated split of Hindi data of [common_voice_17_0](https://huggingface.co/datasets/mozilla-foundation/common_voice_17_0) dataset. It achieves the following results on the evaluation set: - Loss: 0.4524 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 1500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.6856 | 0.3442 | 100 | 0.5976 | | 0.5929 | 0.6885 | 200 | 0.5453 | | 0.5554 | 1.0327 | 300 | 0.5130 | | 0.5407 | 1.3769 | 400 | 0.5052 | | 0.5318 | 1.7212 | 500 | 0.4847 | | 0.5213 | 2.0654 | 600 | 0.4796 | | 0.514 | 2.4096 | 700 | 0.4728 | | 0.5065 | 2.7539 | 800 | 0.4703 | | 0.5046 | 3.0981 | 900 | 0.4684 | | 0.4976 | 3.4423 | 1000 | 0.4621 | | 0.4929 | 3.7866 | 1100 | 0.4583 | | 0.4791 | 4.1308 | 1200 | 0.4550 | | 0.4823 | 4.4750 | 1300 | 0.4529 | | 0.485 | 4.8193 | 1400 | 0.4506 | | 0.4774 | 5.1635 | 1500 | 0.4524 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.0.2 - Tokenizers 0.19.1