File size: 12,314 Bytes
f76d30f 2e97c5d f76d30f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
[**中文说明**](README_CN.md) | [**English**](README.md)
# 项目介绍
本项目旨在提供更好的中文CLIP模型。该项目使用的训练数据均为公开可访问的图像URL及相关中文文本描述,总量达到400M。经过筛选后,我们最终使用了100M的数据进行训练。
本项目于QQ-ARC Joint Lab, Tencent PCG完成
<br><br>
# 模型及实验
<span id="model_card"></span>
## 模型规模 & 下载链接
QA-CLIP目前开源3个不同规模,其模型信息和下载方式见下表:
<table border="1" width="100%">
<tr align="center">
<th>模型规模</th><th>下载链接</th><th>参数量</th><th>视觉侧骨架</th><th>视觉侧参数量</th><th>文本侧骨架</th><th>文本侧参数量</th><th>分辨率</th>
</tr>
<tr align="center">
<td>QA-CLIP<sub>RN50</sub></td><td><a href="https://huggingface.co/TencentARC/QA-CLIP/resolve/main/QA-CLIP-RN50.pt">Download</a></td><td>77M</td><td>ResNet50</td><td>38M</td><td>RBT3</td><td>39M</td><td>224</td>
</tr>
<tr align="center">
<td>QA-CLIP<sub>ViT-B/16</sub></td><td><a href="https://huggingface.co/TencentARC/QA-CLIP/resolve/main/QA-CLIP-base.pt">Download</a></td><td>188M</td><td>ViT-B/16</td><td>86M</td><td>RoBERTa-wwm-Base</td><td>102M</td><td>224</td>
</tr>
<tr align="center">
<td>QA-CLIP<sub>ViT-L/14</sub></td><td><a href="https://huggingface.co/TencentARC/QA-CLIP/resolve/main/QA-CLIP-large.pt">Download</a></td><td>406M</td><td>ViT-L/14</td><td>304M</td><td>RoBERTa-wwm-Base</td><td>102M</td><td>224</td>
</tr>
</table>
<br>
## 实验结果
针对图文检索任务,我们在[MUGE Retrieval](https://tianchi.aliyun.com/muge)、[Flickr30K-CN](https://github.com/li-xirong/cross-lingual-cap)和[COCO-CN](https://github.com/li-xirong/coco-cn)上进行了zero-shot测试。
针对图像零样本分类任务,我们在ImageNet数据集上进行了测试。测试结果见下表:
**Flickr30K-CN Zero-shot Retrieval (Official Test Set)**:
<table border="1" width="120%">
<tr align="center">
<th>Task</th><th colspan="3">Text-to-Image</th><th colspan="3">Image-to-Text</th>
</tr>
<tr align="center">
<td>Metric</td><td>R@1</td><td>R@5</td><td>R@10</td><td>R@1</td><td>R@5</td><td>R@10</td>
</tr>
<tr align="center">
<td width="120%">CN-CLIP<sub>RN50</sub></td><td>48.8</td><td>76.0</td><td>84.6</td><td>60.0</td><td>85.9</td><td>92.0</td>
</tr>
<tr align="center">
<td width="120%">QA-CLIP<sub>RN50</sub></td><td><b>50.5</b></td><td><b>77.4</b></td><td><b>86.1</b></td><td><b>67.1</b></td><td><b>87.9</b></td><td><b>93.2</b></td>
</tr>
<tr align="center">
<td width="120%">CN-CLIP<sub>ViT-B/16</sub></td><td>62.7</td><td>86.9</td><td>92.8</td><td>74.6</td><td>93.5</td><td>97.1</td>
</tr>
<tr align="center">
<td width="120%">QA-CLIP<sub>ViT-B/16</sub></td><td><b>63.8</b></td><td><b>88.0</b></td><td><b>93.2</b></td><td><b>78.4</b></td><td><b>96.1</b></td><td><b>98.5</b></td>
</tr>
<tr align="center">
<td width="120%">CN-CLIP<sub>ViT-L/14</sub></td><td>68.0</td><td>89.7</td><td>94.4</td><td>80.2</td><td>96.6</td><td>98.2</td>
</tr>
<tr align="center">
<td width="120%">AltClip<sub>ViT-L/14</sub></td><td><b>69.7</b></td><td>90.1</td><td>94.8</td><td>84.8</td><td>97.7</td><td>99.1</td>
</tr>
<tr align="center">
<td width="120%">CN-CLIP<sub>ViT-L/14</sub></td><td>69.3</td><td><b>90.3</b></td><td><b>94.7</b></td><td><b>85.3</b></td><td><b>97.9</b></td><td><b>99.2</b></td>
</tr>
</table>
<br>
**MUGE Zero-shot Retrieval (Official Validation Set)**:
<table border="1" width="120%">
<tr align="center">
<th>Task</th><th colspan="3">Text-to-Image</th><th colspan="3">Image-to-Text</th>
</tr>
<tr align="center">
<td>Metric</td><td>R@1</td><td>R@5</td><td>R@10</td><td>R@1</td><td>R@5</td><td>R@10</td>
</tr>
<tr align="center">
<td width="120%">CN-CLIP<sub>RN50</sub></td><td>42.6</td><td>68.5</td><td>78.0</td><td>30.0</td><td>56.2</td><td>66.9</td>
</tr>
<tr align="center">
<td width="120%">QA-CLIP<sub>RN50</sub></td><td><b>44.0</b></td><td><b>69.9</b></td><td><b>79.5</b></td><td><b>32.4</b></td><td><b>59.5</b></td><td><b>70.3</b></td>
</tr>
<tr align="center">
<td width="120%">CN-CLIP<sub>ViT-B/16</sub></td><td>52.1</td><td>76.7</td><td>84.4</td><td>38.7</td><td>65.6</td><td>75.1</td>
</tr>
<tr align="center">
<td width="120%">QA-CLIP<sub>ViT-B/16</sub></td><td><b>53.2</b></td><td><b>77.7</b></td><td><b>85.1</b></td><td><b>40.7</b></td><td><b>68.2</b></td><td><b>77.2</b></td>
</tr>
<tr align="center">
<td width="120%">CN-CLIP<sub>ViT-L/14</sub></td><td>56.4</td><td>79.8</td><td>86.2</td><td>42.6</td><td>69.8</td><td>78.6</td>
</tr>
<tr align="center">
<td width="120%">AltClip<sub>ViT-L/14</sub></td><td>29.6</td><td>49.9</td><td>58.8</td><td>21.4</td><td>42.0</td><td>51.9</td>
</tr>
<tr align="center">
<td width="120%">QA-CLIP<sub>ViT-L/14</sub></td><td><b>57.4</b></td><td><b>81.0</b></td><td><b>87.7</b></td><td><b>45.5</b></td><td><b>73.0</b></td><td><b>81.4</b></td>
</tr>
</table>
<br>
**COCO-CN Zero-shot Retrieval (Official Test Set)**:
<table border="1" width="120%">
<tr align="center">
<th>Task</th><th colspan="3">Text-to-Image</th><th colspan="3">Image-to-Text</th>
</tr>
<tr align="center">
<td>Metric</td><td>R@1</td><td>R@5</td><td>R@10</td><td>R@1</td><td>R@5</td><td>R@10</td>
</tr>
<tr align="center">
<td width="120%">CN-CLIP<sub>RN50</sub></td><td>48.1</td><td>81.3</td><td>90.5</td><td>50.9</td><td>81.1</td><td>90.5</td>
</tr>
<tr align="center">
<td width="120%">QA-CLIP<sub>RN50</sub></td><td><b>50.1</b></td><td><b>82.5</b></td><td><b>91.7</b></td><td><b>56.7</b></td><td><b>85.2</b></td><td><b>92.9</b></td>
</tr>
<tr align="center">
<td width="120%">CN-CLIP<sub>ViT-B/16</sub></td><td>62.2</td><td>87.1</td><td>94.9</td><td>56.3</td><td>84.0</td><td>93.3</td>
</tr>
<tr align="center">
<td width="120%">QA-CLIP<sub>ViT-B/16</sub></td><td><b>62.9</b></td><td><b>87.7</b></td><td><b>94.7</b></td><td><b>61.5</b></td><td><b>87.6</b></td><td><b>94.8</b></td>
</tr>
<tr align="center">
<td width="120%">CN-CLIP<sub>ViT-L/14</sub></td><td>64.9</td><td>88.8</td><td>94.2</td><td>60.6</td><td>84.4</td><td>93.1</td>
</tr>
<tr align="center">
<td width="120%">AltClip<sub>ViT-L/14</sub></td><td>63.5</td><td>87.6</td><td>93.5</td><td>62.6</td><td><b>88.5</b></td><td><b>95.9</b></td>
</tr>
<tr align="center">
<td width="120%">QA-CLIP<sub>ViT-L/14</sub></td><td><b>65.7</b></td><td><b>90.2</b></td><td><b>95.0</b></td><td><b>64.5</b></td><td>88.3</td><td>95.1</td>
</tr>
</table>
<br>
**Zero-shot Image Classification on ImageNet**:
<table border="1" width="120%">
<tr align="center">
<th>Task</th><th colspan="1">ImageNet</th>
</tr>
<tr align="center">
<td width="120%">CN-CLIP<sub>RN50</sub></td><td>33.5</td>
</tr>
<tr align="center">
<td width="120%">QA-CLIP<sub>RN50</sub></td><td><b>35.5</b></td>
</tr>
<tr align="center">
<td width="120%">CN-CLIP<sub>ViT-B/16</sub></td><td>48.4</td>
</tr>
<tr align="center">
<td width="120%">QA-CLIP<sub>ViT-B/16</sub></td><td><b>49.7</b></td>
</tr>
<tr align="center">
<td width="120%">CN-CLIP<sub>ViT-L/14</sub></td><td>54.7</td>
</tr>
<tr align="center">
<td width="120%">QA-CLIP<sub>ViT-L/14</sub></td><td><b>55.8</b></td>
</tr>
</table>
<br>
<br><br>
# 使用教程
## 安装要求
环境配置要求:
* python >= 3.6.4
* pytorch >= 1.8.0 (with torchvision >= 0.9.0)
* CUDA Version >= 10.2
安装本项目所需库
```bash
cd /yourpath/QA-CLIP-main
pip install -r requirements.txt
```
## 推理代码
```bash
export PYTHONPATH=/yourpath/QA-CLIP-main
```
推理代码示例:
```python
import torch
from PIL import Image
import clip as clip
from clip import load_from_name, available_models
print("Available models:", available_models())
# Available models: ['ViT-B-16', 'ViT-L-14', 'RN50']
device = "cuda" if torch.cuda.is_available() else "cpu"
model, preprocess = load_from_name("ViT-B-16", device=device, download_root='./')
model.eval()
image = preprocess(Image.open("examples/pokemon.jpeg")).unsqueeze(0).to(device)
text = clip.tokenize(["杰尼龟", "妙蛙种子", "小火龙", "皮卡丘"]).to(device)
with torch.no_grad():
image_features = model.encode_image(image)
text_features = model.encode_text(text)
# 对特征进行归一化,请使用归一化后的图文特征用于下游任务
image_features /= image_features.norm(dim=-1, keepdim=True)
text_features /= text_features.norm(dim=-1, keepdim=True)
logits_per_image, logits_per_text = model.get_similarity(image, text)
probs = logits_per_image.softmax(dim=-1).cpu().numpy()
print("Label probs:", probs)
```
<br><br>
## 预测及评估
### 图文检索测试数据集下载
<b>[Chinese-CLIP](https://github.com/OFA-Sys/Chinese-CLIP)</b>项目中已经预处理好测试集,这是他们提供的下载链接:
MUGE数据:[下载链接](https://clip-cn-beijing.oss-cn-beijing.aliyuncs.com/datasets/MUGE.zip)
Flickr30K-CN数据:[下载链接](https://clip-cn-beijing.oss-cn-beijing.aliyuncs.com/datasets/Flickr30k-CN.zip)
另外[COCO-CN](https://github.com/li-xirong/coco-cn)数据的获取需要向原作者进行申请
### ImageNet数据集下载
原始数据请自行下载,[中文标签](http://clip-cn-beijing.oss-cn-beijing.aliyuncs.com/datasets/ImageNet-1K/label_cn.txt)和[英文标签](http://clip-cn-beijing.oss-cn-beijing.aliyuncs.com/datasets/ImageNet-1K/label.txt)同样由<b>[Chinese-CLIP](https://github.com/OFA-Sys/Chinese-CLIP)</b>项目提供
### 图文检索评估
图文检索评估代码可以参考如下:
```bash
split=test # 指定计算valid或test集特征
resume=your_ckp_path
DATAPATH=your_DATAPATH
dataset_name=Flickr30k-CN
# dataset_name=MUGE
python -u eval/extract_features.py \
--extract-image-feats \
--extract-text-feats \
--image-data="${DATAPATH}/datasets/${dataset_name}/lmdb/${split}/imgs" \
--text-data="${DATAPATH}/datasets/${dataset_name}/${split}_texts.jsonl" \
--img-batch-size=32 \
--text-batch-size=32 \
--context-length=52 \
--resume=${resume} \
--vision-model=ViT-B-16 \
--text-model=RoBERTa-wwm-ext-base-chinese
python -u eval/make_topk_predictions.py \
--image-feats="${DATAPATH}/datasets/${dataset_name}/${split}_imgs.img_feat.jsonl" \
--text-feats="${DATAPATH}/datasets/${dataset_name}/${split}_texts.txt_feat.jsonl" \
--top-k=10 \
--eval-batch-size=32768 \
--output="${DATAPATH}/datasets/${dataset_name}/${split}_predictions.jsonl"
python -u eval/make_topk_predictions_tr.py \
--image-feats="${DATAPATH}/datasets/${dataset_name}/${split}_imgs.img_feat.jsonl" \
--text-feats="${DATAPATH}/datasets/${dataset_name}/${split}_texts.txt_feat.jsonl" \
--top-k=10 \
--eval-batch-size=32768 \
--output="${DATAPATH}/datasets/${dataset_name}/${split}_tr_predictions.jsonl"
python eval/evaluation.py \
${DATAPATH}/datasets/${dataset_name}/${split}_texts.jsonl \
${DATAPATH}/datasets/${dataset_name}/${split}_predictions.jsonl \
${DATAPATH}/datasets/${dataset_name}/output1.json
cat ${DATAPATH}/datasets/${dataset_name}/output1.json
python eval/transform_ir_annotation_to_tr.py \
--input ${DATAPATH}/datasets/${dataset_name}/${split}_texts.jsonl
python eval/evaluation_tr.py \
${DATAPATH}/datasets/${dataset_name}/${split}_texts.tr.jsonl \
${DATAPATH}/datasets/${dataset_name}/${split}_tr_predictions.jsonl \
${DATAPATH}/datasets/${dataset_name}/output2.json
cat ${DATAPATH}/datasets/${dataset_name}/output2.json
```
### ImageNet零样本分类
ImageNet零样本分类的代码参考如下
```bash
bash scripts/zeroshot_eval.sh 0 \
${DATAPATH} imagenet \
ViT-B-16 RoBERTa-wwm-ext-base-chinese \
./pretrained_weights/QA-CLIP-base.pt
```
<br><br>
# 致谢
项目代码基于<b>[Chinese-CLIP](https://github.com/OFA-Sys/Chinese-CLIP)</b>实现,非常感谢他们优秀的开源工作。
<br><br> |