|
from collections import OrderedDict |
|
from typing import Tuple, Union |
|
from itertools import repeat |
|
import collections.abc |
|
|
|
import math |
|
import logging |
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
from torch.utils.checkpoint import checkpoint |
|
|
|
import importlib.util |
|
if importlib.util.find_spec('flash_attn'): |
|
FlashMHA = importlib.import_module('flash_attn.flash_attention').FlashMHA |
|
|
|
from clip import _tokenizer |
|
from clip.configuration_bert import BertConfig |
|
from clip.modeling_bert import BertModel |
|
|
|
try: |
|
from transformers import CLIPTextModelWithProjection |
|
except: |
|
pass |
|
|
|
class Bottleneck(nn.Module): |
|
expansion = 4 |
|
|
|
def __init__(self, inplanes, planes, stride=1): |
|
super().__init__() |
|
|
|
|
|
self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False) |
|
self.bn1 = nn.BatchNorm2d(planes) |
|
|
|
self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False) |
|
self.bn2 = nn.BatchNorm2d(planes) |
|
|
|
self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity() |
|
|
|
self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False) |
|
self.bn3 = nn.BatchNorm2d(planes * self.expansion) |
|
|
|
self.relu = nn.ReLU(inplace=True) |
|
self.downsample = None |
|
self.stride = stride |
|
|
|
if stride > 1 or inplanes != planes * Bottleneck.expansion: |
|
|
|
self.downsample = nn.Sequential(OrderedDict([ |
|
("-1", nn.AvgPool2d(stride)), |
|
("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)), |
|
("1", nn.BatchNorm2d(planes * self.expansion)) |
|
])) |
|
|
|
def forward(self, x: torch.Tensor): |
|
identity = x |
|
|
|
out = self.relu(self.bn1(self.conv1(x))) |
|
out = self.relu(self.bn2(self.conv2(out))) |
|
out = self.avgpool(out) |
|
out = self.bn3(self.conv3(out)) |
|
|
|
if self.downsample is not None: |
|
identity = self.downsample(x) |
|
|
|
out += identity |
|
out = self.relu(out) |
|
return out |
|
|
|
|
|
class AttentionPool2d(nn.Module): |
|
def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None): |
|
super().__init__() |
|
self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5) |
|
self.k_proj = nn.Linear(embed_dim, embed_dim) |
|
self.q_proj = nn.Linear(embed_dim, embed_dim) |
|
self.v_proj = nn.Linear(embed_dim, embed_dim) |
|
self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim) |
|
self.num_heads = num_heads |
|
|
|
def forward(self, x): |
|
x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(2, 0, 1) |
|
x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) |
|
x = x + self.positional_embedding[:, None, :].to(x.dtype) |
|
x, _ = F.multi_head_attention_forward( |
|
query=x, key=x, value=x, |
|
embed_dim_to_check=x.shape[-1], |
|
num_heads=self.num_heads, |
|
q_proj_weight=self.q_proj.weight, |
|
k_proj_weight=self.k_proj.weight, |
|
v_proj_weight=self.v_proj.weight, |
|
in_proj_weight=None, |
|
in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]), |
|
bias_k=None, |
|
bias_v=None, |
|
add_zero_attn=False, |
|
dropout_p=0, |
|
out_proj_weight=self.c_proj.weight, |
|
out_proj_bias=self.c_proj.bias, |
|
use_separate_proj_weight=True, |
|
training=self.training, |
|
need_weights=False |
|
) |
|
|
|
return x[0] |
|
|
|
|
|
class ModifiedResNet(nn.Module): |
|
""" |
|
A ResNet class that is similar to torchvision's but contains the following changes: |
|
- There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool. |
|
- Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1 |
|
- The final pooling layer is a QKV attention instead of an average pool |
|
""" |
|
|
|
def __init__(self, layers, output_dim, heads, input_resolution=224, width=64): |
|
super().__init__() |
|
self.output_dim = output_dim |
|
self.input_resolution = input_resolution |
|
|
|
|
|
self.conv1 = nn.Conv2d(3, width // 2, kernel_size=3, stride=2, padding=1, bias=False) |
|
self.bn1 = nn.BatchNorm2d(width // 2) |
|
self.conv2 = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False) |
|
self.bn2 = nn.BatchNorm2d(width // 2) |
|
self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False) |
|
self.bn3 = nn.BatchNorm2d(width) |
|
self.avgpool = nn.AvgPool2d(2) |
|
self.relu = nn.ReLU(inplace=True) |
|
|
|
|
|
self._inplanes = width |
|
self.layer1 = self._make_layer(width, layers[0]) |
|
self.layer2 = self._make_layer(width * 2, layers[1], stride=2) |
|
self.layer3 = self._make_layer(width * 4, layers[2], stride=2) |
|
self.layer4 = self._make_layer(width * 8, layers[3], stride=2) |
|
|
|
embed_dim = width * 32 |
|
self.attnpool = AttentionPool2d(input_resolution // 32, embed_dim, heads, output_dim) |
|
|
|
def _make_layer(self, planes, blocks, stride=1): |
|
layers = [Bottleneck(self._inplanes, planes, stride)] |
|
|
|
self._inplanes = planes * Bottleneck.expansion |
|
for _ in range(1, blocks): |
|
layers.append(Bottleneck(self._inplanes, planes)) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
@torch.jit.ignore |
|
def set_grad_checkpointing(self, enable=True): |
|
|
|
pass |
|
|
|
def forward(self, x): |
|
def stem(x): |
|
for conv, bn in [(self.conv1, self.bn1), (self.conv2, self.bn2), (self.conv3, self.bn3)]: |
|
x = self.relu(bn(conv(x))) |
|
x = self.avgpool(x) |
|
return x |
|
|
|
x = x.type(self.conv1.weight.dtype) |
|
x = stem(x) |
|
x = self.layer1(x) |
|
x = self.layer2(x) |
|
x = self.layer3(x) |
|
x = self.layer4(x) |
|
x = self.attnpool(x) |
|
|
|
return x |
|
|
|
|
|
class LayerNorm(nn.LayerNorm): |
|
"""Subclass torch's LayerNorm to handle fp16.""" |
|
|
|
def forward(self, x: torch.Tensor): |
|
orig_type = x.dtype |
|
ret = super().forward(x.type(torch.float32)) |
|
return ret.type(orig_type) |
|
|
|
|
|
class QuickGELU(nn.Module): |
|
def forward(self, x: torch.Tensor): |
|
return x * torch.sigmoid(1.702 * x) |
|
|
|
|
|
class ResidualAttentionBlock(nn.Module): |
|
def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None, use_flash_attention: bool = False): |
|
super().__init__() |
|
|
|
self.attn = nn.MultiheadAttention(d_model, n_head) if not use_flash_attention else FlashMHA(d_model, n_head) |
|
self.ln_1 = LayerNorm(d_model) |
|
self.mlp = nn.Sequential(OrderedDict([ |
|
("c_fc", nn.Linear(d_model, d_model * 4)), |
|
("gelu", QuickGELU()), |
|
("c_proj", nn.Linear(d_model * 4, d_model)) |
|
])) |
|
self.ln_2 = LayerNorm(d_model) |
|
self.attn_mask = attn_mask |
|
self.use_flash_attention = use_flash_attention |
|
|
|
def attention(self, x: torch.Tensor): |
|
self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None |
|
if self.use_flash_attention: |
|
|
|
return self.attn(x.transpose(1, 0))[0].transpose(1, 0) |
|
else: |
|
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0] |
|
|
|
def forward(self, x: torch.Tensor): |
|
x = x + self.attention(self.ln_1(x)) |
|
x = x + self.mlp(self.ln_2(x)) |
|
return x |
|
|
|
|
|
class Transformer(nn.Module): |
|
def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None, use_flash_attention: bool = False): |
|
super().__init__() |
|
self.width = width |
|
self.layers = layers |
|
self.grad_checkpointing = False |
|
self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask, use_flash_attention) for _ in range(layers)]) |
|
|
|
def forward(self, x: torch.Tensor): |
|
if self.grad_checkpointing and not torch.jit.is_scripting(): |
|
for r in self.resblocks: |
|
x = checkpoint(r, x) |
|
return x |
|
return self.resblocks(x) |
|
|
|
|
|
class VisualTransformer(nn.Module): |
|
def __init__(self, input_resolution: int, patch_size: int, width: int, layers: int, heads: int, output_dim: int, use_flash_attention: bool = False): |
|
super().__init__() |
|
self.input_resolution = input_resolution |
|
self.grid_size = (self.input_resolution // patch_size, self.input_resolution // patch_size) |
|
self.output_dim = output_dim |
|
self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False) |
|
|
|
scale = width ** -0.5 |
|
self.class_embedding = nn.Parameter(scale * torch.randn(width)) |
|
self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width)) |
|
self.ln_pre = LayerNorm(width) |
|
|
|
self.transformer = Transformer(width, layers, heads, use_flash_attention=use_flash_attention) |
|
|
|
self.ln_post = LayerNorm(width) |
|
self.proj = nn.Parameter(scale * torch.randn(width, output_dim)) |
|
|
|
@torch.jit.ignore |
|
def set_grad_checkpointing(self, enable=True): |
|
self.transformer.grad_checkpointing = enable |
|
|
|
def random_masking(self, x, mask_ratio): |
|
N, L, D = x.shape |
|
len_keep = int((L - 1) * (1 - mask_ratio)) |
|
|
|
noise = torch.rand(N, L - 1, device=x.device) |
|
ids_shuffle = torch.argsort(noise, dim=1) + torch.ones(N, L - 1, device=x.device, |
|
dtype=int) |
|
ids_keep = ids_shuffle[:, :len_keep] |
|
|
|
x_masked = torch.gather(x, dim=1, index=ids_keep.unsqueeze(-1).repeat(1, 1, D)) |
|
|
|
x0 = x[:, 0, :] |
|
x0 = x0.reshape(N, 1, D) |
|
x_masked_add = torch.cat([x0, x_masked], axis=1) |
|
return x_masked_add |
|
|
|
def forward(self, x: torch.Tensor, mask_ratio: float = 0.0): |
|
x = self.conv1(x) |
|
x = x.reshape(x.shape[0], x.shape[1], -1) |
|
x = x.permute(0, 2, 1) |
|
x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) |
|
x = x + self.positional_embedding.to(x.dtype) |
|
if mask_ratio != 0: |
|
x = self.random_masking(x, mask_ratio) |
|
x = self.ln_pre(x) |
|
|
|
x = x.permute(1, 0, 2) |
|
x = self.transformer(x) |
|
x = x.permute(1, 0, 2) |
|
|
|
x = self.ln_post(x[:, 0, :]) |
|
|
|
if self.proj is not None: |
|
x = x @ self.proj |
|
|
|
return x |
|
|
|
|
|
class CLIP(nn.Module): |
|
def __init__(self, |
|
embed_dim: int, |
|
|
|
image_resolution: int, |
|
vision_layers: Union[Tuple[int, int, int, int], int], |
|
vision_width: int, |
|
vision_patch_size: int, |
|
|
|
vocab_size: int, |
|
text_attention_probs_dropout_prob: float, |
|
text_hidden_act: str, |
|
text_hidden_dropout_prob: float, |
|
text_hidden_size: int, |
|
text_initializer_range: float, |
|
text_intermediate_size: int, |
|
text_max_position_embeddings: int, |
|
text_num_attention_heads: int, |
|
text_num_hidden_layers: int, |
|
text_type_vocab_size: int, |
|
tokenizer = _tokenizer, |
|
|
|
vision_head_width: int = 64, |
|
use_flash_attention: bool = False, |
|
): |
|
super().__init__() |
|
|
|
if isinstance(vision_layers, (tuple, list)): |
|
vision_heads = vision_width * 32 // vision_head_width |
|
self.visual = ModifiedResNet( |
|
layers=vision_layers, |
|
output_dim=embed_dim, |
|
heads=vision_heads, |
|
input_resolution=image_resolution, |
|
width=vision_width |
|
) |
|
else: |
|
vision_heads = vision_width // vision_head_width |
|
self.visual = VisualTransformer( |
|
input_resolution=image_resolution, |
|
patch_size=vision_patch_size, |
|
width=vision_width, |
|
layers=vision_layers, |
|
heads=vision_heads, |
|
output_dim=embed_dim, |
|
use_flash_attention=use_flash_attention |
|
) |
|
|
|
self.bert_config = BertConfig( |
|
vocab_size_or_config_json_file=vocab_size, |
|
hidden_size=text_hidden_size, |
|
num_hidden_layers=text_num_hidden_layers, |
|
num_attention_heads=text_num_attention_heads, |
|
intermediate_size=text_intermediate_size, |
|
hidden_act=text_hidden_act, |
|
hidden_dropout_prob=text_hidden_dropout_prob, |
|
attention_probs_dropout_prob=text_attention_probs_dropout_prob, |
|
max_position_embeddings=text_max_position_embeddings, |
|
type_vocab_size=text_type_vocab_size, |
|
initializer_range=text_initializer_range, |
|
layer_norm_eps=1e-12, |
|
use_flash_attention=use_flash_attention |
|
) |
|
self.bert = BertModel(self.bert_config) |
|
|
|
self.text_projection = nn.Parameter(torch.empty(text_hidden_size, embed_dim)) |
|
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) |
|
|
|
self.tokenizer = tokenizer |
|
|
|
self.initialize_parameters() |
|
|
|
def initialize_parameters(self): |
|
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) |
|
|
|
if isinstance(self.visual, ModifiedResNet): |
|
if self.visual.attnpool is not None: |
|
std = self.visual.attnpool.c_proj.in_features ** -0.5 |
|
nn.init.normal_(self.visual.attnpool.q_proj.weight, std=std) |
|
nn.init.normal_(self.visual.attnpool.k_proj.weight, std=std) |
|
nn.init.normal_(self.visual.attnpool.v_proj.weight, std=std) |
|
nn.init.normal_(self.visual.attnpool.c_proj.weight, std=std) |
|
|
|
for resnet_block in [self.visual.layer1, self.visual.layer2, self.visual.layer3, self.visual.layer4]: |
|
for name, param in resnet_block.named_parameters(): |
|
if name.endswith("bn3.weight"): |
|
nn.init.zeros_(param) |
|
|
|
if self.text_projection is not None: |
|
nn.init.normal_(self.text_projection, std=self.bert_config.hidden_size ** -0.5) |
|
|
|
@torch.jit.ignore |
|
def set_grad_checkpointing(self, enable=True): |
|
self.visual.set_grad_checkpointing(enable) |
|
self.bert.set_grad_checkpointing(enable) |
|
|
|
@property |
|
def dtype(self): |
|
return self.visual.conv1.weight.dtype |
|
|
|
def encode_image(self, image, mask_ratio=0): |
|
if isinstance(self.visual, ModifiedResNet): |
|
|
|
return self.visual(image.type(self.dtype)) |
|
return self.visual(image.type(self.dtype), mask_ratio) |
|
|
|
def encode_text(self, text): |
|
pad_index = self.tokenizer.vocab['[PAD]'] |
|
attn_mask = text.ne(pad_index).type(self.dtype) |
|
x = self.bert(text, attention_mask=attn_mask)[0].type(self.dtype) |
|
return x[:, 0, :] @ self.text_projection |
|
|
|
def forward(self, image, text, mask_ratio=0): |
|
assert image is not None or text is not None, "text and image cannot both be None!" |
|
|
|
if image is None: |
|
return self.encode_text(text) |
|
elif text is None: |
|
return self.encode_image(image, mask_ratio) |
|
image_features = self.encode_image(image, mask_ratio) |
|
text_features = self.encode_text(text) |
|
|
|
image_features = image_features / image_features.norm(dim=-1, keepdim=True) |
|
text_features = text_features / text_features.norm(dim=-1, keepdim=True) |
|
|
|
return image_features, text_features, self.logit_scale.exp() |
|
|
|
def get_similarity(self, image, text): |
|
image_features = self.encode_image(image) |
|
text_features = self.encode_text(text) |
|
|
|
|
|
image_features = image_features / image_features.norm(dim=1, keepdim=True) |
|
text_features = text_features / text_features.norm(dim=1, keepdim=True) |
|
|
|
|
|
logit_scale = self.logit_scale.exp() |
|
logits_per_image = logit_scale * image_features @ text_features.t() |
|
logits_per_text = logits_per_image.t() |
|
|
|
|
|
return logits_per_image, logits_per_text |
|
|
|
class CLIPWithTwoTextEncoder(nn.Module): |
|
def __init__(self, |
|
embed_dim: int, |
|
|
|
image_resolution: int, |
|
vision_layers: Union[Tuple[int, int, int, int], int], |
|
vision_width: int, |
|
vision_patch_size: int, |
|
|
|
vocab_size: int, |
|
text_attention_probs_dropout_prob: float, |
|
text_hidden_act: str, |
|
text_hidden_dropout_prob: float, |
|
text_hidden_size: int, |
|
text_initializer_range: float, |
|
text_intermediate_size: int, |
|
text_max_position_embeddings: int, |
|
text_num_attention_heads: int, |
|
text_num_hidden_layers: int, |
|
text_type_vocab_size: int, |
|
tokenizer = _tokenizer, |
|
|
|
vision_head_width: int = 64, |
|
use_flash_attention: bool = False, |
|
openai_clip_path: str = "/group/30042/kunyi/CLIP/clip-vit-large-patch14/", |
|
): |
|
super().__init__() |
|
|
|
if isinstance(vision_layers, (tuple, list)): |
|
vision_heads = vision_width * 32 // vision_head_width |
|
self.visual = ModifiedResNet( |
|
layers=vision_layers, |
|
output_dim=embed_dim, |
|
heads=vision_heads, |
|
input_resolution=image_resolution, |
|
width=vision_width |
|
) |
|
else: |
|
vision_heads = vision_width // vision_head_width |
|
self.visual = VisualTransformer( |
|
input_resolution=image_resolution, |
|
patch_size=vision_patch_size, |
|
width=vision_width, |
|
layers=vision_layers, |
|
heads=vision_heads, |
|
output_dim=embed_dim, |
|
use_flash_attention=use_flash_attention |
|
) |
|
|
|
self.bert_config = BertConfig( |
|
vocab_size_or_config_json_file=vocab_size, |
|
hidden_size=text_hidden_size, |
|
num_hidden_layers=text_num_hidden_layers, |
|
num_attention_heads=text_num_attention_heads, |
|
intermediate_size=text_intermediate_size, |
|
hidden_act=text_hidden_act, |
|
hidden_dropout_prob=text_hidden_dropout_prob, |
|
attention_probs_dropout_prob=text_attention_probs_dropout_prob, |
|
max_position_embeddings=text_max_position_embeddings, |
|
type_vocab_size=text_type_vocab_size, |
|
initializer_range=text_initializer_range, |
|
layer_norm_eps=1e-12, |
|
use_flash_attention=use_flash_attention |
|
) |
|
self.bert = BertModel(self.bert_config) |
|
|
|
self.text_projection = nn.Parameter(torch.empty(text_hidden_size, embed_dim)) |
|
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) |
|
|
|
self.tokenizer = tokenizer |
|
|
|
print('loading openai clip text encoder') |
|
self.openai_clip_text_encoder = CLIPTextModelWithProjection.from_pretrained(openai_clip_path) |
|
|
|
self.initialize_parameters() |
|
|
|
|
|
def initialize_parameters(self): |
|
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) |
|
|
|
if isinstance(self.visual, ModifiedResNet): |
|
if self.visual.attnpool is not None: |
|
std = self.visual.attnpool.c_proj.in_features ** -0.5 |
|
nn.init.normal_(self.visual.attnpool.q_proj.weight, std=std) |
|
nn.init.normal_(self.visual.attnpool.k_proj.weight, std=std) |
|
nn.init.normal_(self.visual.attnpool.v_proj.weight, std=std) |
|
nn.init.normal_(self.visual.attnpool.c_proj.weight, std=std) |
|
|
|
for resnet_block in [self.visual.layer1, self.visual.layer2, self.visual.layer3, self.visual.layer4]: |
|
for name, param in resnet_block.named_parameters(): |
|
if name.endswith("bn3.weight"): |
|
nn.init.zeros_(param) |
|
|
|
if self.text_projection is not None: |
|
nn.init.normal_(self.text_projection, std=self.bert_config.hidden_size ** -0.5) |
|
|
|
@torch.jit.ignore |
|
def set_grad_checkpointing(self, enable=True): |
|
self.visual.set_grad_checkpointing(enable) |
|
self.bert.set_grad_checkpointing(enable) |
|
|
|
@property |
|
def dtype(self): |
|
return self.visual.conv1.weight.dtype |
|
|
|
def encode_image(self, image, mask_ratio=0): |
|
if isinstance(self.visual, ModifiedResNet): |
|
|
|
return self.visual(image.type(self.dtype)) |
|
return self.visual(image.type(self.dtype), mask_ratio) |
|
|
|
def encode_text(self, text): |
|
pad_index = self.tokenizer.vocab['[PAD]'] |
|
attn_mask = text.ne(pad_index).type(self.dtype) |
|
x = self.bert(text, attention_mask=attn_mask)[0].type(self.dtype) |
|
return x[:, 0, :] @ self.text_projection |
|
|
|
def encode_text_ENG(self, text): |
|
text_emb = self.openai_clip_text_encoder(text).text_embeds |
|
return text_emb |
|
|
|
def forward(self, image, text, is_ENG=False, mask_ratio=0): |
|
assert image is not None or text is not None, "text and image cannot both be None!" |
|
|
|
if image is None: |
|
if not is_ENG: |
|
return self.encode_text(text) |
|
else: |
|
return self.encode_text_ENG(text) |
|
elif text is None: |
|
return self.encode_image(image, mask_ratio) |
|
image_features = self.encode_image(image, mask_ratio) |
|
|
|
if not is_ENG: |
|
text_features = self.encode_text(text) |
|
else: |
|
text_features = self.encode_text_ENG(text) |
|
|
|
image_features = image_features / image_features.norm(dim=-1, keepdim=True) |
|
text_features = text_features / text_features.norm(dim=-1, keepdim=True) |
|
|
|
return image_features, text_features, self.logit_scale.exp() |
|
|
|
def get_similarity(self, image, text): |
|
image_features = self.encode_image(image) |
|
text_features = self.encode_text(text) |
|
|
|
|
|
image_features = image_features / image_features.norm(dim=1, keepdim=True) |
|
text_features = text_features / text_features.norm(dim=1, keepdim=True) |
|
|
|
|
|
logit_scale = self.logit_scale.exp() |
|
logits_per_image = logit_scale * image_features @ text_features.t() |
|
logits_per_text = logits_per_image.t() |
|
|
|
|
|
return logits_per_image, logits_per_text |
|
|
|
class CLIP4SD(nn.Module): |
|
def __init__(self, |
|
embed_dim: int, |
|
|
|
image_resolution: int, |
|
vision_layers: Union[Tuple[int, int, int, int], int], |
|
vision_width: int, |
|
vision_patch_size: int, |
|
|
|
vocab_size: int, |
|
text_attention_probs_dropout_prob: float, |
|
text_hidden_act: str, |
|
text_hidden_dropout_prob: float, |
|
text_hidden_size: int, |
|
text_initializer_range: float, |
|
text_intermediate_size: int, |
|
text_max_position_embeddings: int, |
|
text_num_attention_heads: int, |
|
text_num_hidden_layers: int, |
|
text_type_vocab_size: int, |
|
tokenizer = _tokenizer, |
|
|
|
vision_head_width: int = 64, |
|
use_flash_attention: bool = False, |
|
): |
|
super().__init__() |
|
|
|
if isinstance(vision_layers, (tuple, list)): |
|
vision_heads = vision_width * 32 // vision_head_width |
|
self.visual = ModifiedResNet( |
|
layers=vision_layers, |
|
output_dim=embed_dim, |
|
heads=vision_heads, |
|
input_resolution=image_resolution, |
|
width=vision_width |
|
) |
|
else: |
|
vision_heads = vision_width // vision_head_width |
|
self.visual = VisualTransformer( |
|
input_resolution=image_resolution, |
|
patch_size=vision_patch_size, |
|
width=vision_width, |
|
layers=vision_layers, |
|
heads=vision_heads, |
|
output_dim=embed_dim, |
|
use_flash_attention=use_flash_attention |
|
) |
|
|
|
self.bert_config = BertConfig( |
|
vocab_size_or_config_json_file=vocab_size, |
|
hidden_size=text_hidden_size, |
|
num_hidden_layers=text_num_hidden_layers, |
|
num_attention_heads=text_num_attention_heads, |
|
intermediate_size=text_intermediate_size, |
|
hidden_act=text_hidden_act, |
|
hidden_dropout_prob=text_hidden_dropout_prob, |
|
attention_probs_dropout_prob=text_attention_probs_dropout_prob, |
|
max_position_embeddings=text_max_position_embeddings, |
|
type_vocab_size=text_type_vocab_size, |
|
initializer_range=text_initializer_range, |
|
layer_norm_eps=1e-12, |
|
use_flash_attention=use_flash_attention |
|
) |
|
self.bert = BertModel(self.bert_config) |
|
|
|
self.text_projection = nn.Parameter(torch.empty(text_hidden_size, embed_dim)) |
|
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) |
|
|
|
self.tokenizer = tokenizer |
|
self.ln_final = LayerNorm(text_hidden_size) |
|
|
|
self.initialize_parameters() |
|
|
|
def initialize_parameters(self): |
|
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) |
|
|
|
if isinstance(self.visual, ModifiedResNet): |
|
if self.visual.attnpool is not None: |
|
std = self.visual.attnpool.c_proj.in_features ** -0.5 |
|
nn.init.normal_(self.visual.attnpool.q_proj.weight, std=std) |
|
nn.init.normal_(self.visual.attnpool.k_proj.weight, std=std) |
|
nn.init.normal_(self.visual.attnpool.v_proj.weight, std=std) |
|
nn.init.normal_(self.visual.attnpool.c_proj.weight, std=std) |
|
|
|
for resnet_block in [self.visual.layer1, self.visual.layer2, self.visual.layer3, self.visual.layer4]: |
|
for name, param in resnet_block.named_parameters(): |
|
if name.endswith("bn3.weight"): |
|
nn.init.zeros_(param) |
|
|
|
if self.text_projection is not None: |
|
nn.init.normal_(self.text_projection, std=self.bert_config.hidden_size ** -0.5) |
|
|
|
@torch.jit.ignore |
|
def set_grad_checkpointing(self, enable=True): |
|
self.visual.set_grad_checkpointing(enable) |
|
self.bert.set_grad_checkpointing(enable) |
|
|
|
@property |
|
def dtype(self): |
|
return self.visual.conv1.weight.dtype |
|
|
|
def encode_image(self, image, mask_ratio=0): |
|
if isinstance(self.visual, ModifiedResNet): |
|
|
|
return self.visual(image.type(self.dtype)) |
|
return self.visual(image.type(self.dtype), mask_ratio) |
|
|
|
|
|
|
|
|
|
|
|
|
|
def encode_text(self, text): |
|
pad_index = self.tokenizer.vocab['[PAD]'] |
|
attn_mask = text.ne(pad_index).type(self.dtype) |
|
x = self.bert(text, attention_mask=attn_mask)[0].type(self.dtype) |
|
x = self.ln_final(x).type(self.dtype) |
|
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection |
|
return x |
|
|
|
def forward(self, image, text, mask_ratio=0): |
|
assert image is not None or text is not None, "text and image cannot both be None!" |
|
|
|
if image is None: |
|
return self.encode_text(text) |
|
elif text is None: |
|
return self.encode_image(image) |
|
image_features = self.encode_image(image, mask_ratio) |
|
text_features = self.encode_text(text) |
|
|
|
image_features = image_features / image_features.norm(dim=-1, keepdim=True) |
|
text_features = text_features / text_features.norm(dim=-1, keepdim=True) |
|
|
|
return image_features, text_features, self.logit_scale.exp() |
|
|
|
def get_similarity(self, image, text): |
|
image_features = self.encode_image(image) |
|
text_features = self.encode_text(text) |
|
|
|
|
|
image_features = image_features / image_features.norm(dim=1, keepdim=True) |
|
text_features = text_features / text_features.norm(dim=1, keepdim=True) |
|
|
|
|
|
logit_scale = self.logit_scale.exp() |
|
logits_per_image = logit_scale * image_features @ text_features.t() |
|
logits_per_text = logits_per_image.t() |
|
|
|
|
|
return logits_per_image, logits_per_text |
|
|
|
def convert_models_to_fp32(model): |
|
for p in model.parameters(): |
|
p.data = p.data.float() |
|
if p.grad: |
|
p.grad.data = p.grad.data.float() |
|
|
|
|
|
def convert_weights(model: nn.Module): |
|
"""Convert applicable model parameters to fp16""" |
|
|
|
def _convert_weights_to_fp16(l): |
|
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)): |
|
l.weight.data = l.weight.data.half() |
|
if l.bias is not None: |
|
l.bias.data = l.bias.data.half() |
|
|
|
if isinstance(l, nn.MultiheadAttention): |
|
for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]: |
|
tensor = getattr(l, attr) |
|
if tensor is not None: |
|
tensor.data = tensor.data.half() |
|
|
|
if isinstance(l, BertModel): |
|
l.to(torch.half) |
|
|
|
for name in ["text_projection", "proj"]: |
|
try: |
|
if hasattr(l, name): |
|
attr = getattr(l, name) |
|
if attr is not None: |
|
attr.data = attr.data.half() |
|
except: |
|
print('name', name) |
|
|
|
model.apply(_convert_weights_to_fp16) |
|
|
|
|
|
def restore_model(model, clip_state_dict: dict, bert_state_dict: dict, use_flash_attention: bool): |
|
merged_state_dict = {} |
|
|
|
|
|
if clip_state_dict is not None: |
|
for k, v in clip_state_dict.items(): |
|
if k.startswith("visual") or k == "logit_scale": |
|
merged_state_dict[k] = v |
|
|
|
|
|
if bert_state_dict is not None: |
|
for k, v in bert_state_dict.items(): |
|
if k.startswith("bert") and "bert.pooler" not in k: |
|
merged_state_dict[k] = v |
|
|
|
|
|
if use_flash_attention: |
|
merged_state_dict = convert_state_dict(merged_state_dict) |
|
|
|
convert_weights(model) |
|
resize_pos_embed(merged_state_dict, model) |
|
model.load_state_dict(merged_state_dict, strict=False) |
|
return model.eval() |
|
|
|
|
|
def convert_state_dict(state_dict): |
|
"""Adapt to Flash Attention""" |
|
if not state_dict: |
|
return state_dict |
|
|
|
prefix = 'module.' if list(state_dict.keys())[0].startswith('module') else '' |
|
|
|
if f'{prefix}visual.transformer.resblocks.0.attn.in_proj_weight' in state_dict: |
|
for k in list(state_dict.keys()): |
|
if 'attn.in_proj_weight' in k: |
|
state_dict[k.replace('attn.in_proj_weight', 'attn.Wqkv.weight')] = state_dict.pop(k) |
|
elif 'attn.in_proj_bias' in k: |
|
state_dict[k.replace('attn.in_proj_bias', 'attn.Wqkv.bias')] = state_dict.pop(k) |
|
elif f'{prefix}visual.transformer.resblocks.0.attn.Wqkv.weight' in state_dict: |
|
for k in list(state_dict.keys()): |
|
if 'attn.Wqkv.weight' in k: |
|
state_dict[k.replace('attn.Wqkv.weight', 'attn.in_proj_weight')] = state_dict.pop(k) |
|
elif 'attn.Wqkv.bias' in k: |
|
state_dict[k.replace('attn.Wqkv.bias', 'attn.in_proj_bias')] = state_dict.pop(k) |
|
|
|
if f'{prefix}bert.encoder.layer.0.attention.self.query.weight' in state_dict: |
|
i = 0 |
|
while f'{prefix}bert.encoder.layer.{i}.attention.self.query.weight' in state_dict: |
|
state_dict[f'{prefix}bert.encoder.layer.{i}.attention.self.Wqkv.weight'] = torch.cat( |
|
(state_dict.pop(f'{prefix}bert.encoder.layer.{i}.attention.self.query.weight'), |
|
state_dict.pop(f'{prefix}bert.encoder.layer.{i}.attention.self.key.weight'), |
|
state_dict.pop(f'{prefix}bert.encoder.layer.{i}.attention.self.value.weight')) |
|
) |
|
state_dict[f'{prefix}bert.encoder.layer.{i}.attention.self.Wqkv.bias'] = torch.cat( |
|
(state_dict.pop(f'{prefix}bert.encoder.layer.{i}.attention.self.query.bias'), |
|
state_dict.pop(f'{prefix}bert.encoder.layer.{i}.attention.self.key.bias'), |
|
state_dict.pop(f'{prefix}bert.encoder.layer.{i}.attention.self.value.bias')) |
|
) |
|
state_dict[f'{prefix}bert.encoder.layer.{i}.attention.self.out_proj.weight'] = \ |
|
state_dict.pop(f'{prefix}bert.encoder.layer.{i}.attention.output.dense.weight') |
|
state_dict[f'{prefix}bert.encoder.layer.{i}.attention.self.out_proj.bias'] = \ |
|
state_dict.pop(f'{prefix}bert.encoder.layer.{i}.attention.output.dense.bias') |
|
i += 1 |
|
elif f'{prefix}bert.encoder.layer.0.attention.self.Wqkv.weight' in state_dict: |
|
i = 0 |
|
while f'{prefix}bert.encoder.layer.{i}.attention.self.Wqkv.weight' in state_dict: |
|
state_dict[f'{prefix}bert.encoder.layer.{i}.attention.self.query.weight'], \ |
|
state_dict[f'{prefix}bert.encoder.layer.{i}.attention.self.key.weight'], \ |
|
state_dict[f'{prefix}bert.encoder.layer.{i}.attention.self.value.weight'] = \ |
|
torch.chunk(state_dict.pop(f'{prefix}bert.encoder.layer.{i}.attention.self.Wqkv.weight'), chunks=3) |
|
state_dict[f'{prefix}bert.encoder.layer.{i}.attention.self.query.bias'], \ |
|
state_dict[f'{prefix}bert.encoder.layer.{i}.attention.self.key.bias'], \ |
|
state_dict[f'{prefix}bert.encoder.layer.{i}.attention.self.value.bias'] = \ |
|
torch.chunk(state_dict.pop(f'{prefix}bert.encoder.layer.{i}.attention.self.Wqkv.bias'), chunks=3) |
|
state_dict[f'{prefix}bert.encoder.layer.{i}.attention.output.dense.weight'] = \ |
|
state_dict.pop(f'{prefix}bert.encoder.layer.{i}.attention.self.out_proj.weight') |
|
state_dict[f'{prefix}bert.encoder.layer.{i}.attention.output.dense.bias'] = \ |
|
state_dict.pop(f'module.bert.encoder.layer.{i}.attention.self.out_proj.bias') |
|
i += 1 |
|
|
|
return state_dict |
|
|
|
|
|
def resize_pos_embed(state_dict, model, interpolation: str = 'bicubic', seq_dim=1, prefix=""): |
|
|
|
old_pos_embed = state_dict.get(prefix + 'visual.positional_embedding', None) |
|
model = model.module if hasattr(model, 'module') else model |
|
if old_pos_embed is None or not hasattr(model.visual, 'grid_size'): |
|
return |
|
grid_size = to_2tuple(model.visual.grid_size) |
|
extra_tokens = 1 |
|
new_seq_len = grid_size[0] * grid_size[1] + extra_tokens |
|
if new_seq_len == old_pos_embed.shape[0]: |
|
return |
|
|
|
if extra_tokens: |
|
pos_emb_tok, pos_emb_img = old_pos_embed[:extra_tokens], old_pos_embed[extra_tokens:] |
|
else: |
|
pos_emb_tok, pos_emb_img = None, old_pos_embed |
|
old_grid_size = to_2tuple(int(math.sqrt(len(pos_emb_img)))) |
|
|
|
logging.info('Resizing position embedding grid-size from %s to %s', old_grid_size, grid_size) |
|
pos_emb_img = pos_emb_img.reshape(1, old_grid_size[0], old_grid_size[1], -1).permute(0, 3, 1, 2) |
|
pos_emb_img = F.interpolate( |
|
pos_emb_img, |
|
size=grid_size, |
|
mode=interpolation, |
|
align_corners=True, |
|
) |
|
pos_emb_img = pos_emb_img.permute(0, 2, 3, 1).reshape(1, grid_size[0] * grid_size[1], -1)[0] |
|
if pos_emb_tok is not None: |
|
new_pos_embed = torch.cat([pos_emb_tok, pos_emb_img], dim=0) |
|
else: |
|
new_pos_embed = pos_emb_img |
|
state_dict[prefix + 'visual.positional_embedding'] = new_pos_embed |
|
|
|
|
|
|
|
def _ntuple(n): |
|
def parse(x): |
|
if isinstance(x, collections.abc.Iterable): |
|
return x |
|
return tuple(repeat(x, n)) |
|
return parse |
|
|
|
|
|
to_1tuple = _ntuple(1) |
|
to_2tuple = _ntuple(2) |
|
to_3tuple = _ntuple(3) |
|
to_4tuple = _ntuple(4) |
|
to_ntuple = lambda n, x: _ntuple(n)(x) |
|
|