Upload desription.py
Browse filesThis is a example file
- desription.py +113 -55
desription.py
CHANGED
@@ -2,100 +2,158 @@ import numpy as np
|
|
2 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
3 |
from sklearn.metrics.pairwise import cosine_similarity
|
4 |
import pickle
|
5 |
-
import
|
6 |
|
7 |
-
class
|
8 |
def __init__(self):
|
9 |
self.vectorizer = TfidfVectorizer()
|
10 |
-
self.
|
11 |
-
self.
|
12 |
|
13 |
-
def
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
|
20 |
-
|
21 |
-
|
22 |
|
23 |
-
|
24 |
-
|
|
|
|
|
25 |
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
|
|
|
|
|
|
|
|
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
-
def
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
def save_model(self, filename):
|
47 |
-
|
|
|
|
|
48 |
model_data = {
|
49 |
-
'
|
50 |
'vectorizer': self.vectorizer,
|
51 |
-
'
|
52 |
}
|
53 |
with open(filename, 'wb') as f:
|
54 |
pickle.dump(model_data, f)
|
55 |
|
56 |
def load_model(self, filename):
|
57 |
-
|
|
|
|
|
58 |
try:
|
59 |
with open(filename, 'rb') as f:
|
60 |
model_data = pickle.load(f)
|
61 |
-
self.
|
62 |
self.vectorizer = model_data['vectorizer']
|
63 |
-
self.
|
64 |
return True
|
65 |
except FileNotFoundError:
|
66 |
return False
|
67 |
|
68 |
def main():
|
69 |
-
model =
|
70 |
-
model_file = '
|
71 |
|
|
|
72 |
if not model.load_model(model_file):
|
73 |
-
print("
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
('programming', 'Process of creating sets of instructions that tell a computer how to perform tasks.'),
|
78 |
-
('database', 'Organized collection of structured information or data stored electronically in a computer system.'),
|
79 |
-
('algorithm', 'Step-by-step procedure or formula for solving a problem or accomplishing a task.')
|
80 |
-
]
|
81 |
-
model.train(initial_data)
|
82 |
|
83 |
while True:
|
84 |
-
print("\n===
|
85 |
-
|
86 |
|
87 |
-
if
|
88 |
break
|
89 |
|
90 |
-
found, description = model.get_description(
|
91 |
-
print(f"\nResult
|
92 |
|
93 |
if not found:
|
94 |
-
print("\nLet's add this
|
95 |
-
new_description = input("Please provide a description for this
|
96 |
-
model.
|
97 |
-
print(f"\nThank you! '{
|
98 |
|
|
|
99 |
model.save_model(model_file)
|
100 |
print("Model has been updated and saved.")
|
101 |
|
|
|
2 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
3 |
from sklearn.metrics.pairwise import cosine_similarity
|
4 |
import pickle
|
5 |
+
from datasets import load_dataset
|
6 |
|
7 |
+
class CompanyDescriptionModel:
|
8 |
def __init__(self):
|
9 |
self.vectorizer = TfidfVectorizer()
|
10 |
+
self.company_descriptions = {}
|
11 |
+
self.description_vectors = None
|
12 |
|
13 |
+
def load_huggingface_data(self):
|
14 |
+
"""
|
15 |
+
Load and process the job descriptions dataset from HuggingFace
|
16 |
+
"""
|
17 |
+
print("Loading dataset from HuggingFace...")
|
18 |
+
dataset = load_dataset("jacob-hugging-face/job-descriptions")
|
19 |
|
20 |
+
# Process the training split
|
21 |
+
train_data = dataset['train']
|
22 |
|
23 |
+
# Create company-description pairs
|
24 |
+
for item in train_data:
|
25 |
+
company = item['company_name'].strip().lower()
|
26 |
+
description = item['job_description'].strip()
|
27 |
|
28 |
+
# If company already exists, append new description
|
29 |
+
if company in self.company_descriptions:
|
30 |
+
if isinstance(self.company_descriptions[company], list):
|
31 |
+
self.company_descriptions[company].append(description)
|
32 |
+
else:
|
33 |
+
self.company_descriptions[company] = [self.company_descriptions[company], description]
|
34 |
+
else:
|
35 |
+
self.company_descriptions[company] = description
|
36 |
+
|
37 |
+
print(f"Loaded descriptions for {len(self.company_descriptions)} companies")
|
38 |
|
39 |
+
# Create vectors for all descriptions
|
40 |
+
descriptions = []
|
41 |
+
for desc in self.company_descriptions.values():
|
42 |
+
if isinstance(desc, list):
|
43 |
+
# If multiple descriptions, join them
|
44 |
+
descriptions.append(" ".join(desc))
|
45 |
+
else:
|
46 |
+
descriptions.append(desc)
|
47 |
+
|
48 |
+
self.description_vectors = self.vectorizer.fit_transform(descriptions)
|
49 |
|
50 |
+
def get_description(self, company_name, similarity_threshold=0.3):
|
51 |
+
"""
|
52 |
+
Get job descriptions for a company
|
53 |
+
"""
|
54 |
+
company_name = company_name.lower().strip()
|
55 |
|
56 |
+
# Direct match
|
57 |
+
if company_name in self.company_descriptions:
|
58 |
+
desc = self.company_descriptions[company_name]
|
59 |
+
if isinstance(desc, list):
|
60 |
+
return True, f"Found {len(desc)} job descriptions for {company_name}:\n\n" + "\n\n---\n\n".join(desc)
|
61 |
+
return True, f"Job description for {company_name}:\n\n{desc}"
|
62 |
+
|
63 |
+
# Try to find similar company names
|
64 |
+
try:
|
65 |
+
company_vector = self.vectorizer.transform([company_name])
|
66 |
+
similarities = cosine_similarity(company_vector, self.description_vectors).flatten()
|
67 |
+
max_sim_idx = np.argmax(similarities)
|
68 |
+
|
69 |
+
if similarities[max_sim_idx] >= similarity_threshold:
|
70 |
+
similar_company = list(self.company_descriptions.keys())[max_sim_idx]
|
71 |
+
desc = self.company_descriptions[similar_company]
|
72 |
+
if isinstance(desc, list):
|
73 |
+
return True, f"Similar to '{similar_company}':\n\n" + "\n\n---\n\n".join(desc)
|
74 |
+
return True, f"Similar to '{similar_company}':\n\n{desc}"
|
75 |
+
else:
|
76 |
+
return False, f"No job descriptions found for '{company_name}'. Please provide one for training."
|
77 |
+
except Exception as e:
|
78 |
+
return False, f"Error processing company name: {str(e)}"
|
79 |
|
80 |
+
def add_new_description(self, company_name, description):
|
81 |
+
"""
|
82 |
+
Add a new company and job description
|
83 |
+
"""
|
84 |
+
company_name = company_name.lower().strip()
|
85 |
+
if company_name in self.company_descriptions:
|
86 |
+
if isinstance(self.company_descriptions[company_name], list):
|
87 |
+
self.company_descriptions[company_name].append(description)
|
88 |
+
else:
|
89 |
+
self.company_descriptions[company_name] = [self.company_descriptions[company_name], description]
|
90 |
+
else:
|
91 |
+
self.company_descriptions[company_name] = description
|
92 |
+
|
93 |
+
# Retrain vectors
|
94 |
+
descriptions = []
|
95 |
+
for desc in self.company_descriptions.values():
|
96 |
+
if isinstance(desc, list):
|
97 |
+
descriptions.append(" ".join(desc))
|
98 |
+
else:
|
99 |
+
descriptions.append(desc)
|
100 |
+
|
101 |
+
self.description_vectors = self.vectorizer.fit_transform(descriptions)
|
102 |
|
103 |
def save_model(self, filename):
|
104 |
+
"""
|
105 |
+
Save the model to a file
|
106 |
+
"""
|
107 |
model_data = {
|
108 |
+
'company_descriptions': self.company_descriptions,
|
109 |
'vectorizer': self.vectorizer,
|
110 |
+
'description_vectors': self.description_vectors
|
111 |
}
|
112 |
with open(filename, 'wb') as f:
|
113 |
pickle.dump(model_data, f)
|
114 |
|
115 |
def load_model(self, filename):
|
116 |
+
"""
|
117 |
+
Load the model from a file
|
118 |
+
"""
|
119 |
try:
|
120 |
with open(filename, 'rb') as f:
|
121 |
model_data = pickle.load(f)
|
122 |
+
self.company_descriptions = model_data['company_descriptions']
|
123 |
self.vectorizer = model_data['vectorizer']
|
124 |
+
self.description_vectors = model_data['description_vectors']
|
125 |
return True
|
126 |
except FileNotFoundError:
|
127 |
return False
|
128 |
|
129 |
def main():
|
130 |
+
model = CompanyDescriptionModel()
|
131 |
+
model_file = 'company_description_model.pkl'
|
132 |
|
133 |
+
# Try to load existing model, if not found, load from HuggingFace
|
134 |
if not model.load_model(model_file):
|
135 |
+
print("No existing model found. Loading data from HuggingFace...")
|
136 |
+
model.load_huggingface_data()
|
137 |
+
model.save_model(model_file)
|
138 |
+
print("Initial model created and saved.")
|
|
|
|
|
|
|
|
|
|
|
139 |
|
140 |
while True:
|
141 |
+
print("\n=== Company Job Description System ===")
|
142 |
+
company = input("Enter a company name to get job descriptions (or 'quit' to exit): ").strip()
|
143 |
|
144 |
+
if company.lower() == 'quit':
|
145 |
break
|
146 |
|
147 |
+
found, description = model.get_description(company)
|
148 |
+
print(f"\nResult:\n{description}")
|
149 |
|
150 |
if not found:
|
151 |
+
print("\nLet's add this company to our database!")
|
152 |
+
new_description = input("Please provide a job description for this company: ").strip()
|
153 |
+
model.add_new_description(company, new_description)
|
154 |
+
print(f"\nThank you! Job description for '{company}' has been added to the database.")
|
155 |
|
156 |
+
# Save the updated model
|
157 |
model.save_model(model_file)
|
158 |
print("Model has been updated and saved.")
|
159 |
|