--- license: mit language: - th pipeline_tag: text-generation tags: - instruction-finetuning library_name: adapter-transformers datasets: - iapp_wiki_qa_squad - tatsu-lab/alpaca - wongnai_reviews - wisesight_sentiment --- # 🐃🇹🇭 Buffala-LoRa-TH Buffala-LoRA is a 7B-parameter LLaMA model finetuned to follow instructions. It is trained on the Stanford Alpaca (TH Translated), Wisesignt, WikiTH, Pantip and IAppQ&A dataset and makes use of the Huggingface LLaMA implementation. For more information, please visit [the project's website](https://github.com/tloen/alpaca-lora). ## Issues and what next? - The model still lacks a significant amount of world knowledge, so it is necessary to fine-tune it on larger Thai datasets > Next version: CCNet,OSCAR,thWiki - Currently, there is no translation prompt. We plan to fine-tune the model on the SCB Thai-English dataset soon. - The model works well with the LangChain Search agent (Serpapi), which serves as a hotfix for world knowledge. > Plan for Spaces with search chain demo - Lacked of chat capabilities, waiting for LangChain implementation. ## How to use ```python import torch from peft import PeftModel from transformers import GenerationConfig, LlamaForCausalLM, LlamaTokenizer device = "cuda" tokenizer = LlamaTokenizer.from_pretrained("decapoda-research/llama-7b-hf") model = LlamaForCausalLM.from_pretrained( "decapoda-research/llama-7b-hf", load_in_8bit=True, torch_dtype=torch.float16, device_map="auto", ) model = PeftModel.from_pretrained( model, "Thaweewat/thai-buffala-lora-7b-v0-1", torch_dtype=torch.float16, ) def generate_prompt(instruction, input=None): if input: return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: {instruction} ### Input: {input + get_list_and_snippet(instruction)} ### Response:""" else: return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {instruction} ### Input: {get_list_and_snippet(instruction)} ### Response:""" if not LOAD_8BIT: model.half() model.eval() if torch.__version__ >= "2" and sys.platform != "win32": model = torch.compile(model) def evaluate( instruction, input=None, temperature=0.1, top_p=0.75, top_k=40, num_beams=4, max_new_tokens=128, **kwargs, ): prompt = generate_prompt(instruction, input) inputs = tokenizer(prompt, return_tensors="pt") input_ids = inputs["input_ids"].to(device) generation_config = GenerationConfig( temperature=temperature, top_p=top_p, top_k=top_k, num_beams=num_beams, **kwargs, ) with torch.no_grad(): generation_output = model.generate( input_ids=input_ids, generation_config=generation_config, return_dict_in_generate=True, output_scores=True, max_new_tokens=max_new_tokens, ) s = generation_output.sequences[0] output = tokenizer.decode(s) return output.split("### Response:")[1].strip() evaluate(instruction = "จงแก้สมการต่อไปนี้ X เท่ากับเท่าไหร่", input="X+Y=15 and Y=7") """ X = 8 """