Upload README.md
Browse files
README.md
CHANGED
@@ -5,6 +5,18 @@ license: apache-2.0
|
|
5 |
model_creator: Ziqing Yang
|
6 |
model_name: Chinese Llama 2 7B
|
7 |
model_type: llama
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
quantized_by: TheBloke
|
9 |
---
|
10 |
|
@@ -56,6 +68,7 @@ Here is an incomplate list of clients and libraries that are known to support GG
|
|
56 |
<!-- repositories-available start -->
|
57 |
## Repositories available
|
58 |
|
|
|
59 |
* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Chinese-Llama-2-7B-GPTQ)
|
60 |
* [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Chinese-Llama-2-7B-GGUF)
|
61 |
* [Ziqing Yang's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/ziqingyang/chinese-llama-2-7b)
|
@@ -130,6 +143,63 @@ Refer to the Provided Files table below to see what files use which methods, and
|
|
130 |
|
131 |
<!-- README_GGUF.md-provided-files end -->
|
132 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
<!-- README_GGUF.md-how-to-run start -->
|
134 |
## Example `llama.cpp` command
|
135 |
|
|
|
5 |
model_creator: Ziqing Yang
|
6 |
model_name: Chinese Llama 2 7B
|
7 |
model_type: llama
|
8 |
+
prompt_template: 'Below is an instruction that describes a task. Write a response
|
9 |
+
that appropriately completes the request.
|
10 |
+
|
11 |
+
|
12 |
+
### Instruction:
|
13 |
+
|
14 |
+
{prompt}
|
15 |
+
|
16 |
+
|
17 |
+
### Response:
|
18 |
+
|
19 |
+
'
|
20 |
quantized_by: TheBloke
|
21 |
---
|
22 |
|
|
|
68 |
<!-- repositories-available start -->
|
69 |
## Repositories available
|
70 |
|
71 |
+
* [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Chinese-Llama-2-7B-AWQ)
|
72 |
* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Chinese-Llama-2-7B-GPTQ)
|
73 |
* [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Chinese-Llama-2-7B-GGUF)
|
74 |
* [Ziqing Yang's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/ziqingyang/chinese-llama-2-7b)
|
|
|
143 |
|
144 |
<!-- README_GGUF.md-provided-files end -->
|
145 |
|
146 |
+
<!-- README_GGUF.md-how-to-download start -->
|
147 |
+
## How to download GGUF files
|
148 |
+
|
149 |
+
**Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.
|
150 |
+
|
151 |
+
The following clients/libraries will automatically download models for you, providing a list of available models to choose from:
|
152 |
+
- LM Studio
|
153 |
+
- LoLLMS Web UI
|
154 |
+
- Faraday.dev
|
155 |
+
|
156 |
+
### In `text-generation-webui`
|
157 |
+
|
158 |
+
Under Download Model, you can enter the model repo: TheBloke/Chinese-Llama-2-7B-GGUF and below it, a specific filename to download, such as: chinese-llama-2-7b.q4_K_M.gguf.
|
159 |
+
|
160 |
+
Then click Download.
|
161 |
+
|
162 |
+
### On the command line, including multiple files at once
|
163 |
+
|
164 |
+
I recommend using the `huggingface-hub` Python library:
|
165 |
+
|
166 |
+
```shell
|
167 |
+
pip3 install huggingface-hub>=0.17.1
|
168 |
+
```
|
169 |
+
|
170 |
+
Then you can download any individual model file to the current directory, at high speed, with a command like this:
|
171 |
+
|
172 |
+
```shell
|
173 |
+
huggingface-cli download TheBloke/Chinese-Llama-2-7B-GGUF chinese-llama-2-7b.q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
|
174 |
+
```
|
175 |
+
|
176 |
+
<details>
|
177 |
+
<summary>More advanced huggingface-cli download usage</summary>
|
178 |
+
|
179 |
+
You can also download multiple files at once with a pattern:
|
180 |
+
|
181 |
+
```shell
|
182 |
+
huggingface-cli download TheBloke/Chinese-Llama-2-7B-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf'
|
183 |
+
```
|
184 |
+
|
185 |
+
For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
|
186 |
+
|
187 |
+
To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
|
188 |
+
|
189 |
+
```shell
|
190 |
+
pip3 install hf_transfer
|
191 |
+
```
|
192 |
+
|
193 |
+
And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
|
194 |
+
|
195 |
+
```shell
|
196 |
+
HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/Chinese-Llama-2-7B-GGUF chinese-llama-2-7b.q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
|
197 |
+
```
|
198 |
+
|
199 |
+
Windows CLI users: Use `set HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1` before running the download command.
|
200 |
+
</details>
|
201 |
+
<!-- README_GGUF.md-how-to-download end -->
|
202 |
+
|
203 |
<!-- README_GGUF.md-how-to-run start -->
|
204 |
## Example `llama.cpp` command
|
205 |
|