Initial GGUF model commit
Browse files
README.md
CHANGED
@@ -8,7 +8,7 @@ language:
|
|
8 |
license: llama2
|
9 |
model_creator: OpenAssistant
|
10 |
model_link: https://huggingface.co/OpenAssistant/codellama-13b-oasst-sft-v10
|
11 |
-
model_name: CodeLlama 13B
|
12 |
model_type: llama
|
13 |
quantized_by: TheBloke
|
14 |
---
|
@@ -30,13 +30,13 @@ quantized_by: TheBloke
|
|
30 |
<hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
|
31 |
<!-- header end -->
|
32 |
|
33 |
-
# CodeLlama 13B
|
34 |
- Model creator: [OpenAssistant](https://huggingface.co/OpenAssistant)
|
35 |
-
- Original model: [CodeLlama 13B
|
36 |
|
37 |
## Description
|
38 |
|
39 |
-
This repo contains GGUF format model files for [OpenAssistant's CodeLlama 13B
|
40 |
|
41 |
<!-- README_GGUF.md-about-gguf start -->
|
42 |
### About GGUF
|
@@ -61,9 +61,9 @@ The clients and libraries below are expecting to add GGUF support shortly:
|
|
61 |
<!-- repositories-available start -->
|
62 |
## Repositories available
|
63 |
|
64 |
-
* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/CodeLlama-13B-
|
65 |
-
* [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/CodeLlama-13B-
|
66 |
-
* [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/CodeLlama-13B-
|
67 |
* [OpenAssistant's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/OpenAssistant/codellama-13b-oasst-sft-v10)
|
68 |
<!-- repositories-available end -->
|
69 |
|
@@ -109,16 +109,18 @@ Refer to the Provided Files table below to see what files use which methods, and
|
|
109 |
|
110 |
| Name | Quant method | Bits | Size | Max RAM required | Use case |
|
111 |
| ---- | ---- | ---- | ---- | ---- | ----- |
|
112 |
-
|
|
113 |
-
|
|
114 |
-
|
|
115 |
-
|
|
116 |
-
|
|
117 |
-
|
|
118 |
-
|
|
119 |
-
|
|
120 |
-
|
|
121 |
-
|
|
|
|
|
|
122 |
|
123 |
**Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
|
124 |
<!-- README_GGUF.md-provided-files end -->
|
@@ -131,7 +133,7 @@ Make sure you are using `llama.cpp` from commit [6381d4e110bd0ec02843a60bbeb8b6f
|
|
131 |
For compatibility with older versions of llama.cpp, or for use with third-party clients and libaries, please use GGML files instead.
|
132 |
|
133 |
```
|
134 |
-
./main -t 10 -ngl 32 -m codellama-13b-oasst-sft-v10.q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "
|
135 |
```
|
136 |
Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`.
|
137 |
|
@@ -181,7 +183,7 @@ And thank you again to a16z for their generous grant.
|
|
181 |
<!-- footer end -->
|
182 |
|
183 |
<!-- original-model-card start -->
|
184 |
-
# Original model card: OpenAssistant's CodeLlama 13B
|
185 |
|
186 |
# Open-Assistant CodeLlama 13B SFT v10
|
187 |
|
|
|
8 |
license: llama2
|
9 |
model_creator: OpenAssistant
|
10 |
model_link: https://huggingface.co/OpenAssistant/codellama-13b-oasst-sft-v10
|
11 |
+
model_name: CodeLlama 13B SFT v10
|
12 |
model_type: llama
|
13 |
quantized_by: TheBloke
|
14 |
---
|
|
|
30 |
<hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
|
31 |
<!-- header end -->
|
32 |
|
33 |
+
# CodeLlama 13B SFT v10 - GGUF
|
34 |
- Model creator: [OpenAssistant](https://huggingface.co/OpenAssistant)
|
35 |
+
- Original model: [CodeLlama 13B SFT v10](https://huggingface.co/OpenAssistant/codellama-13b-oasst-sft-v10)
|
36 |
|
37 |
## Description
|
38 |
|
39 |
+
This repo contains GGUF format model files for [OpenAssistant's CodeLlama 13B SFT v10](https://huggingface.co/OpenAssistant/codellama-13b-oasst-sft-v10).
|
40 |
|
41 |
<!-- README_GGUF.md-about-gguf start -->
|
42 |
### About GGUF
|
|
|
61 |
<!-- repositories-available start -->
|
62 |
## Repositories available
|
63 |
|
64 |
+
* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/CodeLlama-13B-OASST-SFT-v10-GPTQ)
|
65 |
+
* [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/CodeLlama-13B-OASST-SFT-v10-GGUF)
|
66 |
+
* [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/CodeLlama-13B-OASST-SFT-v10-GGML)
|
67 |
* [OpenAssistant's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/OpenAssistant/codellama-13b-oasst-sft-v10)
|
68 |
<!-- repositories-available end -->
|
69 |
|
|
|
109 |
|
110 |
| Name | Quant method | Bits | Size | Max RAM required | Use case |
|
111 |
| ---- | ---- | ---- | ---- | ---- | ----- |
|
112 |
+
| codellama-13b-oasst-sft-v10.Q2_K.gguf | Q2_K | 2 | 5.43 GB| 7.93 GB | smallest, significant quality loss - not recommended for most purposes |
|
113 |
+
| codellama-13b-oasst-sft-v10.Q3_K_S.gguf | Q3_K_S | 3 | 5.66 GB| 8.16 GB | very small, high quality loss |
|
114 |
+
| codellama-13b-oasst-sft-v10.Q3_K_M.gguf | Q3_K_M | 3 | 6.34 GB| 8.84 GB | very small, high quality loss |
|
115 |
+
| codellama-13b-oasst-sft-v10.Q3_K_L.gguf | Q3_K_L | 3 | 6.93 GB| 9.43 GB | small, substantial quality loss |
|
116 |
+
| codellama-13b-oasst-sft-v10.Q4_0.gguf | Q4_0 | 4 | 7.37 GB| 9.87 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
|
117 |
+
| codellama-13b-oasst-sft-v10.Q4_K_S.gguf | Q4_K_S | 4 | 7.41 GB| 9.91 GB | small, greater quality loss |
|
118 |
+
| codellama-13b-oasst-sft-v10.Q4_K_M.gguf | Q4_K_M | 4 | 7.87 GB| 10.37 GB | medium, balanced quality - recommended |
|
119 |
+
| codellama-13b-oasst-sft-v10.Q5_0.gguf | Q5_0 | 5 | 8.97 GB| 11.47 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
|
120 |
+
| codellama-13b-oasst-sft-v10.Q5_K_S.gguf | Q5_K_S | 5 | 8.97 GB| 11.47 GB | large, low quality loss - recommended |
|
121 |
+
| codellama-13b-oasst-sft-v10.Q5_K_M.gguf | Q5_K_M | 5 | 9.23 GB| 11.73 GB | large, very low quality loss - recommended |
|
122 |
+
| codellama-13b-oasst-sft-v10.Q6_K.gguf | Q6_K | 6 | 10.68 GB| 13.18 GB | very large, extremely low quality loss |
|
123 |
+
| codellama-13b-oasst-sft-v10.Q8_0.gguf | Q8_0 | 8 | 13.83 GB| 16.33 GB | very large, extremely low quality loss - not recommended |
|
124 |
|
125 |
**Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
|
126 |
<!-- README_GGUF.md-provided-files end -->
|
|
|
133 |
For compatibility with older versions of llama.cpp, or for use with third-party clients and libaries, please use GGML files instead.
|
134 |
|
135 |
```
|
136 |
+
./main -t 10 -ngl 32 -m codellama-13b-oasst-sft-v10.q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "<|im_start|>system\nYou are a story writing assistant.<|im_end|>\n<|im_start|>user\nWrite a story about llamas<|im_end|>\n<|im_start|>assistant"
|
137 |
```
|
138 |
Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`.
|
139 |
|
|
|
183 |
<!-- footer end -->
|
184 |
|
185 |
<!-- original-model-card start -->
|
186 |
+
# Original model card: OpenAssistant's CodeLlama 13B SFT v10
|
187 |
|
188 |
# Open-Assistant CodeLlama 13B SFT v10
|
189 |
|