Transformers
GGUF
English
llama
TheBloke commited on
Commit
1cbcec9
1 Parent(s): 10ed498

Initial GGUF model commit

Browse files
Files changed (1) hide show
  1. README.md +21 -19
README.md CHANGED
@@ -8,7 +8,7 @@ language:
8
  license: llama2
9
  model_creator: OpenAssistant
10
  model_link: https://huggingface.co/OpenAssistant/codellama-13b-oasst-sft-v10
11
- model_name: CodeLlama 13B OASST SFT v10
12
  model_type: llama
13
  quantized_by: TheBloke
14
  ---
@@ -30,13 +30,13 @@ quantized_by: TheBloke
30
  <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
31
  <!-- header end -->
32
 
33
- # CodeLlama 13B OASST SFT v10 - GGUF
34
  - Model creator: [OpenAssistant](https://huggingface.co/OpenAssistant)
35
- - Original model: [CodeLlama 13B OASST SFT v10](https://huggingface.co/OpenAssistant/codellama-13b-oasst-sft-v10)
36
 
37
  ## Description
38
 
39
- This repo contains GGUF format model files for [OpenAssistant's CodeLlama 13B OASST SFT v10](https://huggingface.co/OpenAssistant/codellama-13b-oasst-sft-v10).
40
 
41
  <!-- README_GGUF.md-about-gguf start -->
42
  ### About GGUF
@@ -61,9 +61,9 @@ The clients and libraries below are expecting to add GGUF support shortly:
61
  <!-- repositories-available start -->
62
  ## Repositories available
63
 
64
- * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/CodeLlama-13B-oasst-sft-v10-GPTQ)
65
- * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/CodeLlama-13B-oasst-sft-v10-GGUF)
66
- * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/CodeLlama-13B-oasst-sft-v10-GGML)
67
  * [OpenAssistant's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/OpenAssistant/codellama-13b-oasst-sft-v10)
68
  <!-- repositories-available end -->
69
 
@@ -109,16 +109,18 @@ Refer to the Provided Files table below to see what files use which methods, and
109
 
110
  | Name | Quant method | Bits | Size | Max RAM required | Use case |
111
  | ---- | ---- | ---- | ---- | ---- | ----- |
112
- | [codellama-13b-oasst-sft-v10.Q2_K.gguf](https://huggingface.co/TheBloke/CodeLlama-13B-oasst-sft-v10-GGUF/blob/main/codellama-13b-oasst-sft-v10.Q2_K.gguf) | Q2_K | 2 | 5.43 GB| 7.93 GB | smallest, significant quality loss - not recommended for most purposes |
113
- | [codellama-13b-oasst-sft-v10.Q3_K_S.gguf](https://huggingface.co/TheBloke/CodeLlama-13B-oasst-sft-v10-GGUF/blob/main/codellama-13b-oasst-sft-v10.Q3_K_S.gguf) | Q3_K_S | 3 | 5.66 GB| 8.16 GB | very small, high quality loss |
114
- | [codellama-13b-oasst-sft-v10.Q3_K_M.gguf](https://huggingface.co/TheBloke/CodeLlama-13B-oasst-sft-v10-GGUF/blob/main/codellama-13b-oasst-sft-v10.Q3_K_M.gguf) | Q3_K_M | 3 | 6.34 GB| 8.84 GB | very small, high quality loss |
115
- | [codellama-13b-oasst-sft-v10.Q3_K_L.gguf](https://huggingface.co/TheBloke/CodeLlama-13B-oasst-sft-v10-GGUF/blob/main/codellama-13b-oasst-sft-v10.Q3_K_L.gguf) | Q3_K_L | 3 | 6.93 GB| 9.43 GB | small, substantial quality loss |
116
- | [codellama-13b-oasst-sft-v10.Q4_K_S.gguf](https://huggingface.co/TheBloke/CodeLlama-13B-oasst-sft-v10-GGUF/blob/main/codellama-13b-oasst-sft-v10.Q4_K_S.gguf) | Q4_K_S | 4 | 7.41 GB| 9.91 GB | small, greater quality loss |
117
- | [codellama-13b-oasst-sft-v10.Q4_K_M.gguf](https://huggingface.co/TheBloke/CodeLlama-13B-oasst-sft-v10-GGUF/blob/main/codellama-13b-oasst-sft-v10.Q4_K_M.gguf) | Q4_K_M | 4 | 7.87 GB| 10.37 GB | medium, balanced quality - recommended |
118
- | [codellama-13b-oasst-sft-v10.Q5_K_S.gguf](https://huggingface.co/TheBloke/CodeLlama-13B-oasst-sft-v10-GGUF/blob/main/codellama-13b-oasst-sft-v10.Q5_K_S.gguf) | Q5_K_S | 5 | 8.97 GB| 11.47 GB | large, low quality loss - recommended |
119
- | [codellama-13b-oasst-sft-v10.Q5_K_M.gguf](https://huggingface.co/TheBloke/CodeLlama-13B-oasst-sft-v10-GGUF/blob/main/codellama-13b-oasst-sft-v10.Q5_K_M.gguf) | Q5_K_M | 5 | 9.23 GB| 11.73 GB | large, very low quality loss - recommended |
120
- | [codellama-13b-oasst-sft-v10.Q6_K.gguf](https://huggingface.co/TheBloke/CodeLlama-13B-oasst-sft-v10-GGUF/blob/main/codellama-13b-oasst-sft-v10.Q6_K.gguf) | Q6_K | 6 | 10.68 GB| 13.18 GB | very large, extremely low quality loss |
121
- | [codellama-13b-oasst-sft-v10.Q8_0.gguf](https://huggingface.co/TheBloke/CodeLlama-13B-oasst-sft-v10-GGUF/blob/main/codellama-13b-oasst-sft-v10.Q8_0.gguf) | Q8_0 | 8 | 13.83 GB| 16.33 GB | very large, extremely low quality loss - not recommended |
 
 
122
 
123
  **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
124
  <!-- README_GGUF.md-provided-files end -->
@@ -131,7 +133,7 @@ Make sure you are using `llama.cpp` from commit [6381d4e110bd0ec02843a60bbeb8b6f
131
  For compatibility with older versions of llama.cpp, or for use with third-party clients and libaries, please use GGML files instead.
132
 
133
  ```
134
- ./main -t 10 -ngl 32 -m codellama-13b-oasst-sft-v10.q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### Instruction: Write a story about llamas\n### Response:"
135
  ```
136
  Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`.
137
 
@@ -181,7 +183,7 @@ And thank you again to a16z for their generous grant.
181
  <!-- footer end -->
182
 
183
  <!-- original-model-card start -->
184
- # Original model card: OpenAssistant's CodeLlama 13B OASST SFT v10
185
 
186
  # Open-Assistant CodeLlama 13B SFT v10
187
 
 
8
  license: llama2
9
  model_creator: OpenAssistant
10
  model_link: https://huggingface.co/OpenAssistant/codellama-13b-oasst-sft-v10
11
+ model_name: CodeLlama 13B SFT v10
12
  model_type: llama
13
  quantized_by: TheBloke
14
  ---
 
30
  <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
31
  <!-- header end -->
32
 
33
+ # CodeLlama 13B SFT v10 - GGUF
34
  - Model creator: [OpenAssistant](https://huggingface.co/OpenAssistant)
35
+ - Original model: [CodeLlama 13B SFT v10](https://huggingface.co/OpenAssistant/codellama-13b-oasst-sft-v10)
36
 
37
  ## Description
38
 
39
+ This repo contains GGUF format model files for [OpenAssistant's CodeLlama 13B SFT v10](https://huggingface.co/OpenAssistant/codellama-13b-oasst-sft-v10).
40
 
41
  <!-- README_GGUF.md-about-gguf start -->
42
  ### About GGUF
 
61
  <!-- repositories-available start -->
62
  ## Repositories available
63
 
64
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/CodeLlama-13B-OASST-SFT-v10-GPTQ)
65
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/CodeLlama-13B-OASST-SFT-v10-GGUF)
66
+ * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/CodeLlama-13B-OASST-SFT-v10-GGML)
67
  * [OpenAssistant's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/OpenAssistant/codellama-13b-oasst-sft-v10)
68
  <!-- repositories-available end -->
69
 
 
109
 
110
  | Name | Quant method | Bits | Size | Max RAM required | Use case |
111
  | ---- | ---- | ---- | ---- | ---- | ----- |
112
+ | codellama-13b-oasst-sft-v10.Q2_K.gguf | Q2_K | 2 | 5.43 GB| 7.93 GB | smallest, significant quality loss - not recommended for most purposes |
113
+ | codellama-13b-oasst-sft-v10.Q3_K_S.gguf | Q3_K_S | 3 | 5.66 GB| 8.16 GB | very small, high quality loss |
114
+ | codellama-13b-oasst-sft-v10.Q3_K_M.gguf | Q3_K_M | 3 | 6.34 GB| 8.84 GB | very small, high quality loss |
115
+ | codellama-13b-oasst-sft-v10.Q3_K_L.gguf | Q3_K_L | 3 | 6.93 GB| 9.43 GB | small, substantial quality loss |
116
+ | codellama-13b-oasst-sft-v10.Q4_0.gguf | Q4_0 | 4 | 7.37 GB| 9.87 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
117
+ | codellama-13b-oasst-sft-v10.Q4_K_S.gguf | Q4_K_S | 4 | 7.41 GB| 9.91 GB | small, greater quality loss |
118
+ | codellama-13b-oasst-sft-v10.Q4_K_M.gguf | Q4_K_M | 4 | 7.87 GB| 10.37 GB | medium, balanced quality - recommended |
119
+ | codellama-13b-oasst-sft-v10.Q5_0.gguf | Q5_0 | 5 | 8.97 GB| 11.47 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
120
+ | codellama-13b-oasst-sft-v10.Q5_K_S.gguf | Q5_K_S | 5 | 8.97 GB| 11.47 GB | large, low quality loss - recommended |
121
+ | codellama-13b-oasst-sft-v10.Q5_K_M.gguf | Q5_K_M | 5 | 9.23 GB| 11.73 GB | large, very low quality loss - recommended |
122
+ | codellama-13b-oasst-sft-v10.Q6_K.gguf | Q6_K | 6 | 10.68 GB| 13.18 GB | very large, extremely low quality loss |
123
+ | codellama-13b-oasst-sft-v10.Q8_0.gguf | Q8_0 | 8 | 13.83 GB| 16.33 GB | very large, extremely low quality loss - not recommended |
124
 
125
  **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
126
  <!-- README_GGUF.md-provided-files end -->
 
133
  For compatibility with older versions of llama.cpp, or for use with third-party clients and libaries, please use GGML files instead.
134
 
135
  ```
136
+ ./main -t 10 -ngl 32 -m codellama-13b-oasst-sft-v10.q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "<|im_start|>system\nYou are a story writing assistant.<|im_end|>\n<|im_start|>user\nWrite a story about llamas<|im_end|>\n<|im_start|>assistant"
137
  ```
138
  Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`.
139
 
 
183
  <!-- footer end -->
184
 
185
  <!-- original-model-card start -->
186
+ # Original model card: OpenAssistant's CodeLlama 13B SFT v10
187
 
188
  # Open-Assistant CodeLlama 13B SFT v10
189