TheBloke commited on
Commit
576085e
·
1 Parent(s): 3c3ee6d

Initial upload of GGML models.

Browse files
Manticore-13B.ggmlv2.q4_0.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6ceb97efc6843ed07b9b56de89bfad248d3f6ae93e48853013325e1d99724183
3
+ size 8136770688
Manticore-13B.ggmlv2.q4_1.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3b7cb29c5366679bc7b42f07b428a958e0fc6a1743505e02f295aa16eb488d97
3
+ size 9763701888
Manticore-13B.ggmlv2.q5_0.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f205d0d02812a88e2bc6c0e7c132f41a1bb10815128786f0554af417d86eca8b
3
+ size 8950236288
Manticore-13B.ggmlv2.q5_1.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b6628f7cd71387fd8b2f3e55036d14dd7d83e4df72f89b8d3100be433b3cff88
3
+ size 9763701888
Manticore-13B.ggmlv2.q8_0.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b1896b05065e5cf4f1c514424568d7bf4c7327287391276ea013660498b9e63e
3
+ size 14644495488
README.md ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ datasets:
3
+ - anon8231489123/ShareGPT_Vicuna_unfiltered
4
+ - ehartford/wizard_vicuna_70k_unfiltered
5
+ - ehartford/WizardLM_alpaca_evol_instruct_70k_unfiltered
6
+ - QingyiSi/Alpaca-CoT
7
+ - teknium/GPT4-LLM-Cleaned
8
+ - teknium/GPTeacher-General-Instruct
9
+ - metaeval/ScienceQA_text_only
10
+ - hellaswag
11
+ - tasksource/mmlu
12
+ - openai/summarize_from_feedback
13
+ language:
14
+ - en
15
+ library_name: transformers
16
+ pipeline_tag: text-generation
17
+ ---
18
+
19
+ # Manticore 13B GGML
20
+
21
+ This is GGML format quantised 4bit and 5bit models of [OpenAccess AI Collective's Manticore 13B](https://huggingface.co/openaccess-ai-collective/manticore-13b).
22
+
23
+ This repo is the result of quantising to 4-bit, 5-bit and 8-bit GGML for CPU (+CUDA) inference using [llama.cpp](https://github.com/ggerganov/llama.cpp).
24
+
25
+ ## Repositories available
26
+
27
+ * [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/TheBloke/Manticore-13B-GPTQ).
28
+ * [4-bit, 5-bit 8-bit GGML models for llama.cpp CPU (+CUDA) inference](https://huggingface.co/TheBloke/TheBloke/Manticore-13B-GGML).
29
+ * [OpenAccess AI Collective's original float16 HF format repo for GPU inference and further conversions](https://huggingface.co/openaccess-ai-collective/manticore-13b).
30
+
31
+ ## THE FILES IN MAIN BRANCH REQUIRES LATEST LLAMA.CPP (May 12th 2023 - commit b9fd7ee)!
32
+
33
+ llama.cpp recently made a breaking change to its quantisation methods.
34
+
35
+ I have quantised the GGML files in this repo with the latest version. Therefore you will require llama.cpp compiled on May 12th or later (commit `b9fd7ee` or later) to use them.
36
+
37
+ ## Provided files
38
+ | Name | Quant method | Bits | Size | RAM required | Use case |
39
+ | ---- | ---- | ---- | ---- | ---- | ----- |
40
+ `manticore-13B.ggmlv2.q4_0.bin` | q4_0 | 4bit | 8.14GB | 10.5GB | 4-bit. |
41
+ `manticore-13B.ggmlv2.q4_1.bin` | q5_0 | 5bit | 8.95GB | 11.0GB | 5-bit. Higher accuracy, higher resource usage and slower inference. |
42
+ `manticore-13B.ggmlv2.q5_0.bin` | q5_1 | 5bit | 9.76GB | 12.25GB | 5-bit. Even higher accuracy, and higher resource usage and slower inference. |
43
+ `manticore-13B.ggmlv2.q8_0.bin` | q8_0 | 8bit | 14.6GB | 17GB | 8-bit. Almost indistinguishable from float16. Huge resource use and slow. Not recommended for normal use. |
44
+
45
+ ## How to run in `llama.cpp`
46
+
47
+ I use the following command line; adjust for your tastes and needs:
48
+
49
+ ```
50
+ ./main -t 8 -m manticore-13B-.ggmlv2.q5_0.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### Instruction: write a story about llamas ### Response:"
51
+ ```
52
+
53
+ Change `-t 8` to the number of physical CPU cores you have.
54
+
55
+ ## How to run in `text-generation-webui`
56
+
57
+ GGML models can be loaded into text-generation-webui by installing the llama.cpp module, then placing the ggml model file in a model folder as usual.
58
+
59
+ Further instructions here: [text-generation-webui/docs/llama.cpp-models.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp-models.md).
60
+
61
+ # Original Model Card: Manticore 13B - Preview Release (previously Wizard Mega)
62
+
63
+ Manticore 13B is a Llama 13B model fine-tuned on the following datasets:
64
+ - [ShareGPT](https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered) - based on a cleaned and de-suped subset
65
+ - [WizardLM](https://huggingface.co/datasets/ehartford/WizardLM_alpaca_evol_instruct_70k_unfiltered)
66
+ - [Wizard-Vicuna](https://huggingface.co/datasets/ehartford/wizard_vicuna_70k_unfiltered)
67
+ - [subset of QingyiSi/Alpaca-CoT for roleplay and CoT](https://huggingface.co/QingyiSi/Alpaca-CoT)
68
+ - [GPT4-LLM-Cleaned](https://huggingface.co/datasets/teknium/GPT4-LLM-Cleaned)
69
+ - [GPTeacher-General-Instruct](https://huggingface.co/datasets/teknium/GPTeacher-General-Instruct)
70
+ - ARC-Easy & ARC-Challenge - instruct augmented for detailed responses
71
+ - mmlu: instruct augmented for detailed responses subset including
72
+ - abstract_algebra
73
+ - conceptual_physics
74
+ - formal_logic
75
+ - high_school_physics
76
+ - logical_fallacies
77
+ - [hellaswag](https://huggingface.co/datasets/hellaswag) - 5K row subset of instruct augmented for concise responses
78
+ - [metaeval/ScienceQA_text_only](https://huggingface.co/datasets/metaeval/ScienceQA_text_only) - instruct for concise responses
79
+ - [openai/summarize_from_feedback](https://huggingface.co/datasets/openai/summarize_from_feedback) - instruct augmented tl;dr summarization
80
+
81
+
82
+ # Demo
83
+
84
+ Try out the model in HF Spaces. The demo uses a quantized GGML version of the model to quickly return predictions on smaller GPUs (and even CPUs). Quantized GGML may have some minimal loss of model quality.
85
+ - https://huggingface.co/spaces/openaccess-ai-collective/manticore-ggml
86
+
87
+ ## Release Notes
88
+
89
+ - https://wandb.ai/wing-lian/manticore-13b/runs/nq3u3uoh/workspace
90
+
91
+ ## Build
92
+
93
+ Manticore was built with [Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) on 8xA100 80GB
94
+ - Preview Release: 1 epoch taking 8 hours.
95
+ - The configuration to duplicate this build is provided in this repo's [/config folder](https://huggingface.co/openaccess-ai-collective/manticore-13b/tree/main/configs).
96
+
97
+ ## Bias, Risks, and Limitations
98
+ Manticore has not been aligned to human preferences with techniques like RLHF or deployed with in-the-loop filtering of responses like ChatGPT, so the model can produce problematic outputs (especially when prompted to do so).
99
+ Manticore was fine-tuned from the base model LlaMa 13B, please refer to its model card's Limitations Section for relevant information.
100
+
101
+ ## Examples
102
+
103
+ ````
104
+ ### Instruction: write Python code that returns the first n numbers of the Fibonacci sequence using memoization.
105
+
106
+ ### Assistant:
107
+ ````
108
+
109
+ ```
110
+ ### Instruction: Finish the joke, a mechanic and a car salesman walk into a bar...
111
+
112
+ ### Assistant:
113
+ ```
114
+