TheBloke commited on
Commit
199194c
1 Parent(s): 94c161c

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +429 -0
README.md ADDED
@@ -0,0 +1,429 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: cloudyu/Mixtral_34Bx2_MoE_60B
3
+ inference: false
4
+ license: cc-by-nc-4.0
5
+ model_creator: hai
6
+ model_name: Mixtral 34Bx2 MoE 60B
7
+ model_type: mixtral
8
+ prompt_template: '{prompt}
9
+
10
+ '
11
+ quantized_by: TheBloke
12
+ ---
13
+ <!-- markdownlint-disable MD041 -->
14
+
15
+ <!-- header start -->
16
+ <!-- 200823 -->
17
+ <div style="width: auto; margin-left: auto; margin-right: auto">
18
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
19
+ </div>
20
+ <div style="display: flex; justify-content: space-between; width: 100%;">
21
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
22
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
23
+ </div>
24
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
25
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
26
+ </div>
27
+ </div>
28
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
29
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
30
+ <!-- header end -->
31
+
32
+ # Mixtral 34Bx2 MoE 60B - GGUF
33
+ - Model creator: [hai](https://huggingface.co/cloudyu)
34
+ - Original model: [Mixtral 34Bx2 MoE 60B](https://huggingface.co/cloudyu/Mixtral_34Bx2_MoE_60B)
35
+
36
+ <!-- description start -->
37
+ ## Description
38
+
39
+ This repo contains GGUF format model files for [hai's Mixtral 34Bx2 MoE 60B](https://huggingface.co/cloudyu/Mixtral_34Bx2_MoE_60B).
40
+
41
+ These files were quantised using hardware kindly provided by [Massed Compute](https://massedcompute.com/).
42
+
43
+ <!-- description end -->
44
+ <!-- README_GGUF.md-about-gguf start -->
45
+ ### About GGUF
46
+
47
+ GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
48
+
49
+ Here is an incomplete list of clients and libraries that are known to support GGUF:
50
+
51
+ * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option.
52
+ * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
53
+ * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
54
+ * [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel.
55
+ * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023.
56
+ * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection.
57
+ * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.
58
+ * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
59
+ * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use.
60
+ * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models.
61
+
62
+ <!-- README_GGUF.md-about-gguf end -->
63
+ <!-- repositories-available start -->
64
+ ## Repositories available
65
+
66
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Mixtral_34Bx2_MoE_60B-AWQ)
67
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Mixtral_34Bx2_MoE_60B-GPTQ)
68
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Mixtral_34Bx2_MoE_60B-GGUF)
69
+ * [hai's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/cloudyu/Mixtral_34Bx2_MoE_60B)
70
+ <!-- repositories-available end -->
71
+
72
+ <!-- prompt-template start -->
73
+ ## Prompt template: None
74
+
75
+ ```
76
+ {prompt}
77
+
78
+ ```
79
+
80
+ <!-- prompt-template end -->
81
+
82
+
83
+ <!-- compatibility_gguf start -->
84
+ ## Compatibility
85
+
86
+ These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221)
87
+
88
+ They are also compatible with many third party UIs and libraries - please see the list at the top of this README.
89
+
90
+ ## Explanation of quantisation methods
91
+
92
+ <details>
93
+ <summary>Click to see details</summary>
94
+
95
+ The new methods available are:
96
+
97
+ * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
98
+ * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
99
+ * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
100
+ * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
101
+ * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
102
+
103
+ Refer to the Provided Files table below to see what files use which methods, and how.
104
+ </details>
105
+ <!-- compatibility_gguf end -->
106
+
107
+ <!-- README_GGUF.md-provided-files start -->
108
+ ## Provided files
109
+
110
+ | Name | Quant method | Bits | Size | Max RAM required | Use case |
111
+ | ---- | ---- | ---- | ---- | ---- | ----- |
112
+ | [mixtral_34bx2_moe_60b.Q2_K.gguf](https://huggingface.co/TheBloke/Mixtral_34Bx2_MoE_60B-GGUF/blob/main/mixtral_34bx2_moe_60b.Q2_K.gguf) | Q2_K | 2 | 20.55 GB| 23.05 GB | smallest, significant quality loss - not recommended for most purposes |
113
+ | [mixtral_34bx2_moe_60b.Q3_K_M.gguf](https://huggingface.co/TheBloke/Mixtral_34Bx2_MoE_60B-GGUF/blob/main/mixtral_34bx2_moe_60b.Q3_K_M.gguf) | Q3_K_M | 3 | 26.79 GB| 29.29 GB | very small, high quality loss |
114
+ | [mixtral_34bx2_moe_60b.Q4_0.gguf](https://huggingface.co/TheBloke/Mixtral_34Bx2_MoE_60B-GGUF/blob/main/mixtral_34bx2_moe_60b.Q4_0.gguf) | Q4_0 | 4 | 34.33 GB| 36.83 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
115
+ | [mixtral_34bx2_moe_60b.Q4_K_M.gguf](https://huggingface.co/TheBloke/Mixtral_34Bx2_MoE_60B-GGUF/blob/main/mixtral_34bx2_moe_60b.Q4_K_M.gguf) | Q4_K_M | 4 | 34.39 GB| 36.89 GB | medium, balanced quality - recommended |
116
+ | [mixtral_34bx2_moe_60b.Q5_0.gguf](https://huggingface.co/TheBloke/Mixtral_34Bx2_MoE_60B-GGUF/blob/main/mixtral_34bx2_moe_60b.Q5_0.gguf) | Q5_0 | 5 | 41.88 GB| 44.38 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
117
+ | [mixtral_34bx2_moe_60b.Q5_K_M.gguf](https://huggingface.co/TheBloke/Mixtral_34Bx2_MoE_60B-GGUF/blob/main/mixtral_34bx2_moe_60b.Q5_K_M.gguf) | Q5_K_M | 5 | 41.91 GB| 44.41 GB | large, very low quality loss - recommended |
118
+ | [mixtral_34bx2_moe_60b.Q6_K.gguf](https://huggingface.co/TheBloke/Mixtral_34Bx2_MoE_60B-GGUF/blob/main/mixtral_34bx2_moe_60b.Q6_K.gguf) | Q6_K | 6 | 49.89 GB| 52.39 GB | very large, extremely low quality loss |
119
+ | mixtral_34bx2_moe_60b.Q8_0.gguf | Q8_0 | 8 | 64.62 GB| 67.12 GB | very large, extremely low quality loss - not recommended |
120
+
121
+ **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
122
+
123
+ ### Q6_K and Q8_0 files are split and require joining
124
+
125
+ **Note:** HF does not support uploading files larger than 50GB. Therefore I have uploaded the Q6_K and Q8_0 files as split files.
126
+
127
+ <details>
128
+ <summary>Click for instructions regarding Q6_K and Q8_0 files</summary>
129
+
130
+ ### q6_K
131
+ Please download:
132
+ * `mixtral_34bx2_moe_60b.Q6_K.gguf-split-a`
133
+ * `mixtral_34bx2_moe_60b.Q6_K.gguf-split-b`
134
+
135
+ ### q8_0
136
+ Please download:
137
+ * `mixtral_34bx2_moe_60b.Q8_0.gguf-split-a`
138
+ * `mixtral_34bx2_moe_60b.Q8_0.gguf-split-b`
139
+
140
+ To join the files, do the following:
141
+
142
+ Linux and macOS:
143
+ ```
144
+ cat mixtral_34bx2_moe_60b.Q6_K.gguf-split-* > mixtral_34bx2_moe_60b.Q6_K.gguf && rm mixtral_34bx2_moe_60b.Q6_K.gguf-split-*
145
+ cat mixtral_34bx2_moe_60b.Q8_0.gguf-split-* > mixtral_34bx2_moe_60b.Q8_0.gguf && rm mixtral_34bx2_moe_60b.Q8_0.gguf-split-*
146
+ ```
147
+ Windows command line:
148
+ ```
149
+ COPY /B mixtral_34bx2_moe_60b.Q6_K.gguf-split-a + mixtral_34bx2_moe_60b.Q6_K.gguf-split-b mixtral_34bx2_moe_60b.Q6_K.gguf
150
+ del mixtral_34bx2_moe_60b.Q6_K.gguf-split-a mixtral_34bx2_moe_60b.Q6_K.gguf-split-b
151
+
152
+ COPY /B mixtral_34bx2_moe_60b.Q8_0.gguf-split-a + mixtral_34bx2_moe_60b.Q8_0.gguf-split-b mixtral_34bx2_moe_60b.Q8_0.gguf
153
+ del mixtral_34bx2_moe_60b.Q8_0.gguf-split-a mixtral_34bx2_moe_60b.Q8_0.gguf-split-b
154
+ ```
155
+
156
+ </details>
157
+ <!-- README_GGUF.md-provided-files end -->
158
+
159
+ <!-- README_GGUF.md-how-to-download start -->
160
+ ## How to download GGUF files
161
+
162
+ **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.
163
+
164
+ The following clients/libraries will automatically download models for you, providing a list of available models to choose from:
165
+
166
+ * LM Studio
167
+ * LoLLMS Web UI
168
+ * Faraday.dev
169
+
170
+ ### In `text-generation-webui`
171
+
172
+ Under Download Model, you can enter the model repo: TheBloke/Mixtral_34Bx2_MoE_60B-GGUF and below it, a specific filename to download, such as: mixtral_34bx2_moe_60b.Q4_K_M.gguf.
173
+
174
+ Then click Download.
175
+
176
+ ### On the command line, including multiple files at once
177
+
178
+ I recommend using the `huggingface-hub` Python library:
179
+
180
+ ```shell
181
+ pip3 install huggingface-hub
182
+ ```
183
+
184
+ Then you can download any individual model file to the current directory, at high speed, with a command like this:
185
+
186
+ ```shell
187
+ huggingface-cli download TheBloke/Mixtral_34Bx2_MoE_60B-GGUF mixtral_34bx2_moe_60b.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
188
+ ```
189
+
190
+ <details>
191
+ <summary>More advanced huggingface-cli download usage (click to read)</summary>
192
+
193
+ You can also download multiple files at once with a pattern:
194
+
195
+ ```shell
196
+ huggingface-cli download TheBloke/Mixtral_34Bx2_MoE_60B-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf'
197
+ ```
198
+
199
+ For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
200
+
201
+ To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
202
+
203
+ ```shell
204
+ pip3 install hf_transfer
205
+ ```
206
+
207
+ And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
208
+
209
+ ```shell
210
+ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/Mixtral_34Bx2_MoE_60B-GGUF mixtral_34bx2_moe_60b.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
211
+ ```
212
+
213
+ Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
214
+ </details>
215
+ <!-- README_GGUF.md-how-to-download end -->
216
+
217
+ <!-- README_GGUF.md-how-to-run start -->
218
+ ## Example `llama.cpp` command
219
+
220
+ Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
221
+
222
+ ```shell
223
+ ./main -ngl 35 -m mixtral_34bx2_moe_60b.Q4_K_M.gguf --color -c 200000 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "{prompt}"
224
+ ```
225
+
226
+ Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
227
+
228
+ Change `-c 200000` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. Note that longer sequence lengths require much more resources, so you may need to reduce this value.
229
+
230
+ If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
231
+
232
+ For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)
233
+
234
+ ## How to run in `text-generation-webui`
235
+
236
+ Further instructions can be found in the text-generation-webui documentation, here: [text-generation-webui/docs/04 ‐ Model Tab.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/04%20%E2%80%90%20Model%20Tab.md#llamacpp).
237
+
238
+ ## How to run from Python code
239
+
240
+ You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. Note that at the time of writing (Nov 27th 2023), ctransformers has not been updated for some time and is not compatible with some recent models. Therefore I recommend you use llama-cpp-python.
241
+
242
+ ### How to load this model in Python code, using llama-cpp-python
243
+
244
+ For full documentation, please see: [llama-cpp-python docs](https://abetlen.github.io/llama-cpp-python/).
245
+
246
+ #### First install the package
247
+
248
+ Run one of the following commands, according to your system:
249
+
250
+ ```shell
251
+ # Base ctransformers with no GPU acceleration
252
+ pip install llama-cpp-python
253
+ # With NVidia CUDA acceleration
254
+ CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python
255
+ # Or with OpenBLAS acceleration
256
+ CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python
257
+ # Or with CLBLast acceleration
258
+ CMAKE_ARGS="-DLLAMA_CLBLAST=on" pip install llama-cpp-python
259
+ # Or with AMD ROCm GPU acceleration (Linux only)
260
+ CMAKE_ARGS="-DLLAMA_HIPBLAS=on" pip install llama-cpp-python
261
+ # Or with Metal GPU acceleration for macOS systems only
262
+ CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python
263
+
264
+ # In windows, to set the variables CMAKE_ARGS in PowerShell, follow this format; eg for NVidia CUDA:
265
+ $env:CMAKE_ARGS = "-DLLAMA_OPENBLAS=on"
266
+ pip install llama-cpp-python
267
+ ```
268
+
269
+ #### Simple llama-cpp-python example code
270
+
271
+ ```python
272
+ from llama_cpp import Llama
273
+
274
+ # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
275
+ llm = Llama(
276
+ model_path="./mixtral_34bx2_moe_60b.Q4_K_M.gguf", # Download the model file first
277
+ n_ctx=200000, # The max sequence length to use - note that longer sequence lengths require much more resources
278
+ n_threads=8, # The number of CPU threads to use, tailor to your system and the resulting performance
279
+ n_gpu_layers=35 # The number of layers to offload to GPU, if you have GPU acceleration available
280
+ )
281
+
282
+ # Simple inference example
283
+ output = llm(
284
+ "{prompt}", # Prompt
285
+ max_tokens=512, # Generate up to 512 tokens
286
+ stop=["</s>"], # Example stop token - not necessarily correct for this specific model! Please check before using.
287
+ echo=True # Whether to echo the prompt
288
+ )
289
+
290
+ # Chat Completion API
291
+
292
+ llm = Llama(model_path="./mixtral_34bx2_moe_60b.Q4_K_M.gguf", chat_format="llama-2") # Set chat_format according to the model you are using
293
+ llm.create_chat_completion(
294
+ messages = [
295
+ {"role": "system", "content": "You are a story writing assistant."},
296
+ {
297
+ "role": "user",
298
+ "content": "Write a story about llamas."
299
+ }
300
+ ]
301
+ )
302
+ ```
303
+
304
+ ## How to use with LangChain
305
+
306
+ Here are guides on using llama-cpp-python and ctransformers with LangChain:
307
+
308
+ * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
309
+ * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)
310
+
311
+ <!-- README_GGUF.md-how-to-run end -->
312
+
313
+ <!-- footer start -->
314
+ <!-- 200823 -->
315
+ ## Discord
316
+
317
+ For further support, and discussions on these models and AI in general, join us at:
318
+
319
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
320
+
321
+ ## Thanks, and how to contribute
322
+
323
+ Thanks to the [chirper.ai](https://chirper.ai) team!
324
+
325
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
326
+
327
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
328
+
329
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
330
+
331
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
332
+
333
+ * Patreon: https://patreon.com/TheBlokeAI
334
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
335
+
336
+ **Special thanks to**: Aemon Algiz.
337
+
338
+ **Patreon special mentions**: Michael Levine, 阿明, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjäreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros
339
+
340
+
341
+ Thank you to all my generous patrons and donaters!
342
+
343
+ And thank you again to a16z for their generous grant.
344
+
345
+ <!-- footer end -->
346
+
347
+ <!-- original-model-card start -->
348
+ # Original model card: hai's Mixtral 34Bx2 MoE 60B
349
+
350
+
351
+ # Mixtral MOE 2x34B
352
+
353
+ This is my first English & Chinese MoE Model based on
354
+ * [jondurbin/bagel-dpo-34b-v0.2]
355
+ * [SUSTech/SUS-Chat-34B]
356
+
357
+
358
+ gpu code example
359
+
360
+ ```
361
+ import torch
362
+ from transformers import AutoTokenizer, AutoModelForCausalLM
363
+ import math
364
+
365
+ ## v2 models
366
+ model_path = "cloudyu/Mixtral_34Bx2_MoE_60B"
367
+
368
+ tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False)
369
+ model = AutoModelForCausalLM.from_pretrained(
370
+ model_path, torch_dtype=torch.float32, device_map='auto',local_files_only=False, load_in_4bit=True
371
+ )
372
+ print(model)
373
+ prompt = input("please input prompt:")
374
+ while len(prompt) > 0:
375
+ input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to("cuda")
376
+
377
+ generation_output = model.generate(
378
+ input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2
379
+ )
380
+ print(tokenizer.decode(generation_output[0]))
381
+ prompt = input("please input prompt:")
382
+ ```
383
+
384
+ CPU example
385
+
386
+ ```
387
+ import torch
388
+ from transformers import AutoTokenizer, AutoModelForCausalLM
389
+ import math
390
+
391
+ ## v2 models
392
+ model_path = "cloudyu/Mixtral_34Bx2_MoE_60B"
393
+
394
+ tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False)
395
+ model = AutoModelForCausalLM.from_pretrained(
396
+ model_path, torch_dtype=torch.bfloat16, device_map='cpu'
397
+ )
398
+ print(model)
399
+ prompt = input("please input prompt:")
400
+ while len(prompt) > 0:
401
+ input_ids = tokenizer(prompt, return_tensors="pt").input_ids
402
+
403
+ generation_output = model.generate(
404
+ input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2
405
+ )
406
+ print(tokenizer.decode(generation_output[0]))
407
+ prompt = input("please input prompt:")
408
+
409
+ ```
410
+
411
+ Output Examples:
412
+ ```
413
+ please input prompt:write a story about yosemite
414
+ write a story about yosemite national park
415
+ Yosemite National Park is located in the Sierra Nevada Mountains of California, USA. It was established on October 1st, 1890 and covers an area of approximately 747,956 acres (302,687 hectares). The park boasts some of America's most iconic natural wonders such as Yosemite Valley, Half Dome, El Capitan, Bridalveil Fall, Tuolumne Meadows, Glacier Point, Mariposa Grove, and many more breathtaking landscapes that attract millions of visitors each year.
416
+
417
+ The history of Yosemite dates back to over seven million years ago when glaciers carved out its stunning granite cliffs and valleys. Native American tribes like Miwok and Paiute have lived here for thousands of years before European explorers arrived during the mid-nineteenth century. In fact, it was John Muir - one of America’s greatest conservationists who helped establish this region as a protected wilderness area by advocating for its preservation through his writings and activism.
418
+
419
+ Today, Yosemite offers various recreational activities including hiking, rock climbing, camping, fishing, horseback riding, wildlife watching, photography, and winter sports like skiing and snowshoeing. Visitors can also enjoy ranger programs, guided tours, educational exhibits at visitor centers, or simply take time to appreciate nature while strolling along scenic trails surrounded by towering sequoia trees, cascading waterfalls, and crystal clear lakes.
420
+
421
+ In addition to preserving these awe-inspiring vistas, Yosemite plays a crucial role in protecting numerous plant and animal species found within its boundaries. Some notable inhabitants include black bears, mountain lions, mule deer, coyotes, bobcats, golden eagles, peregrine falcons, bighorn sheep, and several types of fish native to the Merced River which runs through the heart of the valley.
422
+
423
+ As we continue our journey into the future, let us remember the importance of safeguarding places like Yosemite so they may remain pristine sanctuaries where both humans and animals alike can thrive together amidst unspoiled beauty.</s>
424
+ please input prompt:李开复是谁?
425
+ 李开复是谁?
426
+ 他是一个在人工智能领域有着卓越贡献的科学家,也是一位成功的企业家。他的名字与谷歌、微软等科技巨头紧密相连,他是创新工场的创始人之一,更是无数创业者心中的偶像和导师。然而,除了这些耀眼的光环之外,李开复还有着怎样的故事呢?让我们一起来揭秘这位传奇人物的人生历程吧!</s>
427
+ ```
428
+
429
+ <!-- original-model-card end -->