TheBloke commited on
Commit
77a46f4
1 Parent(s): 1646019

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +360 -0
README.md ADDED
@@ -0,0 +1,360 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ inference: false
3
+ language:
4
+ - en
5
+ library_name: transformers
6
+ license: llama2
7
+ model_creator: fangloveskari
8
+ model_link: https://huggingface.co/fangloveskari/ORCA_LLaMA_70B_QLoRA
9
+ model_name: ORCA LLaMA 70B QLoRA
10
+ model_type: llama
11
+ quantized_by: TheBloke
12
+ ---
13
+
14
+ <!-- header start -->
15
+ <!-- 200823 -->
16
+ <div style="width: auto; margin-left: auto; margin-right: auto">
17
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
18
+ </div>
19
+ <div style="display: flex; justify-content: space-between; width: 100%;">
20
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
21
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
22
+ </div>
23
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
24
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
25
+ </div>
26
+ </div>
27
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
28
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
29
+ <!-- header end -->
30
+
31
+ # ORCA LLaMA 70B QLoRA - GPTQ
32
+ - Model creator: [fangloveskari](https://huggingface.co/fangloveskari)
33
+ - Original model: [ORCA LLaMA 70B QLoRA](https://huggingface.co/fangloveskari/ORCA_LLaMA_70B_QLoRA)
34
+
35
+ <!-- description start -->
36
+ ## Description
37
+
38
+ This repo contains GPTQ model files for [fangloveskari's ORCA LLaMA 70B QLoRA](https://huggingface.co/fangloveskari/ORCA_LLaMA_70B_QLoRA).
39
+
40
+ Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
41
+
42
+ <!-- description end -->
43
+ <!-- repositories-available start -->
44
+ ## Repositories available
45
+
46
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/ORCA_LLaMA_70B_QLoRA-GPTQ)
47
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/ORCA_LLaMA_70B_QLoRA-GGUF)
48
+ * [fangloveskari's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/fangloveskari/ORCA_LLaMA_70B_QLoRA)
49
+ <!-- repositories-available end -->
50
+
51
+ <!-- prompt-template start -->
52
+ ## Prompt template: TBC
53
+
54
+ ```
55
+ Info on prompt template will be added shortly.
56
+
57
+ ```
58
+
59
+ <!-- prompt-template end -->
60
+
61
+ <!-- README_GPTQ.md-provided-files start -->
62
+ ## Provided files and GPTQ parameters
63
+
64
+ Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
65
+
66
+ Each separate quant is in a different branch. See below for instructions on fetching from different branches.
67
+
68
+ All recent GPTQ files are made with AutoGPTQ, and all files in non-main branches are made with AutoGPTQ. Files in the `main` branch which were uploaded before August 2023 were made with GPTQ-for-LLaMa.
69
+
70
+ <details>
71
+ <summary>Explanation of GPTQ parameters</summary>
72
+
73
+ - Bits: The bit size of the quantised model.
74
+ - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
75
+ - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
76
+ - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
77
+ - GPTQ dataset: The dataset used for quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
78
+ - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
79
+ - ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama models in 4-bit.
80
+
81
+ </details>
82
+
83
+ | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
84
+ | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
85
+ | [main](https://huggingface.co/TheBloke/ORCA_LLaMA_70B_QLoRA-GPTQ/tree/main) | 4 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 35.33 GB | Yes | 4-bit, with Act Order. No group size, to lower VRAM requirements. |
86
+ | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/ORCA_LLaMA_70B_QLoRA-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 40.66 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. |
87
+ | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/ORCA_LLaMA_70B_QLoRA-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 37.99 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. |
88
+ | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/ORCA_LLaMA_70B_QLoRA-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 36.65 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. |
89
+ | [gptq-3bit--1g-actorder_True](https://huggingface.co/TheBloke/ORCA_LLaMA_70B_QLoRA-GPTQ/tree/gptq-3bit--1g-actorder_True) | 3 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 26.77 GB | No | 3-bit, with Act Order and no group size. Lowest possible VRAM requirements. May be lower quality than 3-bit 128g. |
90
+ | [gptq-3bit-128g-actorder_True](https://huggingface.co/TheBloke/ORCA_LLaMA_70B_QLoRA-GPTQ/tree/gptq-3bit-128g-actorder_True) | 3 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 28.03 GB | No | 3-bit, with group size 128g and act-order. Higher quality than 128g-False. |
91
+
92
+ <!-- README_GPTQ.md-provided-files end -->
93
+
94
+ <!-- README_GPTQ.md-download-from-branches start -->
95
+ ## How to download from branches
96
+
97
+ - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/ORCA_LLaMA_70B_QLoRA-GPTQ:main`
98
+ - With Git, you can clone a branch with:
99
+ ```
100
+ git clone --single-branch --branch main https://huggingface.co/TheBloke/ORCA_LLaMA_70B_QLoRA-GPTQ
101
+ ```
102
+ - In Python Transformers code, the branch is the `revision` parameter; see below.
103
+ <!-- README_GPTQ.md-download-from-branches end -->
104
+ <!-- README_GPTQ.md-text-generation-webui start -->
105
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
106
+
107
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
108
+
109
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
110
+
111
+ 1. Click the **Model tab**.
112
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/ORCA_LLaMA_70B_QLoRA-GPTQ`.
113
+ - To download from a specific branch, enter for example `TheBloke/ORCA_LLaMA_70B_QLoRA-GPTQ:main`
114
+ - see Provided Files above for the list of branches for each option.
115
+ 3. Click **Download**.
116
+ 4. The model will start downloading. Once it's finished it will say "Done".
117
+ 5. In the top left, click the refresh icon next to **Model**.
118
+ 6. In the **Model** dropdown, choose the model you just downloaded: `ORCA_LLaMA_70B_QLoRA-GPTQ`
119
+ 7. The model will automatically load, and is now ready for use!
120
+ 8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
121
+ * Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
122
+ 9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started!
123
+ <!-- README_GPTQ.md-text-generation-webui end -->
124
+
125
+ <!-- README_GPTQ.md-use-from-python start -->
126
+ ## How to use this GPTQ model from Python code
127
+
128
+ ### Install the necessary packages
129
+
130
+ Requires: Transformers 4.32.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.
131
+
132
+ ```shell
133
+ pip3 install transformers>=4.32.0 optimum>=1.12.0
134
+ pip3 install auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/ # Use cu117 if on CUDA 11.7
135
+ ```
136
+
137
+ If you have problems installing AutoGPTQ using the pre-built wheels, install it from source instead:
138
+
139
+ ```shell
140
+ pip3 uninstall -y auto-gptq
141
+ git clone https://github.com/PanQiWei/AutoGPTQ
142
+ cd AutoGPTQ
143
+ pip3 install .
144
+ ```
145
+
146
+ ### For CodeLlama models only: you must use Transformers 4.33.0 or later.
147
+
148
+ If 4.33.0 is not yet released when you read this, you will need to install Transformers from source:
149
+ ```shell
150
+ pip3 uninstall -y transformers
151
+ pip3 install git+https://github.com/huggingface/transformers.git
152
+ ```
153
+
154
+ ### You can then use the following code
155
+
156
+ ```python
157
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
158
+
159
+ model_name_or_path = "TheBloke/ORCA_LLaMA_70B_QLoRA-GPTQ"
160
+ # To use a different branch, change revision
161
+ # For example: revision="main"
162
+ model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
163
+ device_map="auto",
164
+ trust_remote_code=False,
165
+ revision="main")
166
+
167
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
168
+
169
+ prompt = "Tell me about AI"
170
+ prompt_template=f'''Info on prompt template will be added shortly.
171
+
172
+ '''
173
+
174
+ print("\n\n*** Generate:")
175
+
176
+ input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
177
+ output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
178
+ print(tokenizer.decode(output[0]))
179
+
180
+ # Inference can also be done using transformers' pipeline
181
+
182
+ print("*** Pipeline:")
183
+ pipe = pipeline(
184
+ "text-generation",
185
+ model=model,
186
+ tokenizer=tokenizer,
187
+ max_new_tokens=512,
188
+ do_sample=True,
189
+ temperature=0.7,
190
+ top_p=0.95,
191
+ top_k=40,
192
+ repetition_penalty=1.1
193
+ )
194
+
195
+ print(pipe(prompt_template)[0]['generated_text'])
196
+ ```
197
+ <!-- README_GPTQ.md-use-from-python end -->
198
+
199
+ <!-- README_GPTQ.md-compatibility start -->
200
+ ## Compatibility
201
+
202
+ The files provided are tested to work with AutoGPTQ, both via Transformers and using AutoGPTQ directly. They should also work with [Occ4m's GPTQ-for-LLaMa fork](https://github.com/0cc4m/KoboldAI).
203
+
204
+ [ExLlama](https://github.com/turboderp/exllama) is compatible with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
205
+
206
+ [Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) is compatible with all GPTQ models.
207
+ <!-- README_GPTQ.md-compatibility end -->
208
+
209
+ <!-- footer start -->
210
+ <!-- 200823 -->
211
+ ## Discord
212
+
213
+ For further support, and discussions on these models and AI in general, join us at:
214
+
215
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
216
+
217
+ ## Thanks, and how to contribute
218
+
219
+ Thanks to the [chirper.ai](https://chirper.ai) team!
220
+
221
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
222
+
223
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
224
+
225
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
226
+
227
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
228
+
229
+ * Patreon: https://patreon.com/TheBlokeAI
230
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
231
+
232
+ **Special thanks to**: Aemon Algiz.
233
+
234
+ **Patreon special mentions**: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser
235
+
236
+
237
+ Thank you to all my generous patrons and donaters!
238
+
239
+ And thank you again to a16z for their generous grant.
240
+
241
+ <!-- footer end -->
242
+
243
+ # Original model card: fangloveskari's ORCA LLaMA 70B QLoRA
244
+
245
+
246
+
247
+ # Dolphin_ORCA_PlatyPus_LLaMA_70b
248
+
249
+ ### Dataset
250
+ Here is the list of datasets used:
251
+ * Dolphin
252
+ * Open-Platypus
253
+ * OpenOrca
254
+
255
+ **mixed strategy: 100%Open-Platypus + ~1%Dolphin(GPT-4) + ~1%OpenOrca(GPT-4)**
256
+ <br>
257
+
258
+ **Model Finetuned By fangloveskari.**
259
+
260
+ <br>
261
+
262
+ ### Training FrameWork and Parameters
263
+
264
+ #### FrameWork
265
+ https://github.com/hiyouga/LLaMA-Efficient-Tuning
266
+ We add flash_attention_2 and ORCA dataset support, with some minor modifications.
267
+
268
+ <br>
269
+
270
+ #### Parameters
271
+ We list some training parameters here:
272
+ | Parameter | Value |
273
+ |-----------------------|-------------|
274
+ | Finetune_Type | QLoRA(NF4) |
275
+ | LoRA_Rank | 16 |
276
+ | LoRA_Alpha | 16 |
277
+ | Batch_Size | 14 |
278
+ | GPUs | 8xA100(80G) |
279
+ | LR_Scheduler | cosine |
280
+ | LR | 3e-4 |
281
+ | Epoch | 1 |
282
+ | DeepSpeed | ZERO-2 |
283
+
284
+ <br>
285
+
286
+ ### Model Export
287
+ We tried two methods to fuse the adapter back to the base model:
288
+ * https://github.com/hiyouga/LLaMA-Efficient-Tuning/blob/main/src/export_model.py
289
+ * https://github.com/jondurbin/qlora/blob/main/qmerge.py
290
+
291
+ Generally, the second will get better ARC(+0.15) and Truthful_QA(+0.3) scores but the other two(MMLU(-0.2) and HelloSwag(-0.2)) seems to degenerate (Just for my model).
292
+
293
+ <br>
294
+
295
+ ### Evaluation
296
+
297
+ | Metric | Value |
298
+ |-----------------------|-------|
299
+ | ARC (25-shot) | 72.27 |
300
+ | HellaSwag (10-shot) | 87.74 |
301
+ | MMLU (5-shot) | 70.23 |
302
+ | TruthfulQA (0-shot) | 63.37 |
303
+ | Avg. | 73.40 |
304
+
305
+ <br>
306
+
307
+ ### license disclaimer:
308
+
309
+ This model is bound by the license & usage restrictions of the original Llama-2 model. And comes with no warranty or gurantees of any kind.
310
+
311
+ <br>
312
+
313
+
314
+
315
+
316
+ ### Limitations & Biases:
317
+
318
+ Llama 2 and fine-tuned variants are a new technology that carries risks with use. Testing conducted to date has been in English, and has not covered, nor could it cover all scenarios. For these reasons, as with all LLMs, Llama 2 and any fine-tuned varient's potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 2 variants, developers should perform safety testing and tuning tailored to their specific applications of the model.
319
+
320
+ Please see the Responsible Use Guide available at https://ai.meta.com/llama/responsible-use-guide/
321
+
322
+ <br>
323
+
324
+ ### Citiation:
325
+
326
+ Please kindly cite using the following BibTeX:
327
+
328
+ ```bibtex
329
+ @article{platypus2023,
330
+ title={Platypus: Quick, Cheap, and Powerful Refinement of LLMs},
331
+ author={Ariel N. Lee and Cole J. Hunter and Nataniel Ruiz},
332
+ booktitle={arXiv preprint arxiv:2308.07317},
333
+ year={2023}
334
+ }
335
+ ```
336
+
337
+ ```
338
+ @misc{mukherjee2023orca,
339
+ title={Orca: Progressive Learning from Complex Explanation Traces of GPT-4},
340
+ author={Subhabrata Mukherjee and Arindam Mitra and Ganesh Jawahar and Sahaj Agarwal and Hamid Palangi and Ahmed Awadallah},
341
+ year={2023},
342
+ eprint={2306.02707},
343
+ archivePrefix={arXiv},
344
+ primaryClass={cs.CL}
345
+ }
346
+ ```
347
+
348
+ ```
349
+ @software{touvron2023llama2,
350
+ title={Llama 2: Open Foundation and Fine-Tuned Chat Models},
351
+ author={Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava,
352
+ Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
353
+ Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez Madian Khabsa, Isabel Kloumann,
354
+ Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov,
355
+ Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith,
356
+ Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu , Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
357
+ Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, Thomas Scialom},
358
+ year={2023}
359
+ }
360
+ ```