---
license: other
inference: false
---
# OpenAssistant LLaMA 30B SFT 7 GGML
This is a repo of GGML format models for [OpenAssistant's LLaMA 30B SFT 7](https://huggingface.co/OpenAssistant/oasst-sft-7-llama-30b-xor).
It is the result of merging the XORs from the above repo with the original Llama 30B weights, and then quantising to 4bit and 5bit GGML for CPU inference using [llama.cpp](https://github.com/ggerganov/llama.cpp).
This is epoch 7 of OpenAssistant's training of their Llama 30B model.
## Repositories available
* [4bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/OpenAssistant-SFT-7-Llama-30B-GPTQ).
* [4bit and 5bit GGML models for CPU inference](https://huggingface.co/TheBloke/OpenAssistant-SFT-7-Llama-30B-GGML).
* [Unquantised 16bit model in HF format](https://huggingface.co/TheBloke/OpenAssistant-SFT-7-Llama-30B-HF).
## PROMPT TEMPLATE
This model requires the following prompt template:
```
<|prompter|> prompt goes here
<|assistant|>:
```
## THE FILES IN MAIN BRANCH REQUIRES LATEST LLAMA.CPP (May 19th 2023 - commit 2d5db48)!
llama.cpp recently made another breaking change to its quantisation methods - https://github.com/ggerganov/llama.cpp/pull/1508
I have quantised the GGML files in this repo with the latest version. Therefore you will require llama.cpp compiled on May 19th or later (commit `2d5db48` or later) to use them.
For files compatible with the previous version of llama.cpp, please see branch `previous_llama_ggmlv2`.
## Provided files
| Name | Quant method | Bits | Size | RAM required | Use case |
| ---- | ---- | ---- | ---- | ---- | ----- |
`OpenAssistant-30B-epoch7.ggmlv3.q4_0.bin` | q4_0 | 4bit | 20.3GB | 23GB | 4-bit. |
`OpenAssistant-30B-epoch7.ggmlv3.q4_1.bin` | q4_1 | 4bit | 22.4GB | 25GB | 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. |
`OpenAssistant-30B-epoch7.ggmlv3.q5_0.bin` | q5_0 | 5bit | 22.4GB | 25GB | 5-bit. Higher accuracy, higher resource usage and slower inference. |
`OpenAssistant-30B-epoch7.ggmlv3.q5_1.bin` | q5_1 | 5bit | 24.4GB | 27GB | 5-bit. Even higher accuracy, resource usage and slower inference. |
`OpenAssistant-30B-epoch7.ggmlv3.q8_9.bin` | q8_0 | 8bit | 24.4GB | 27GB | 8-bit. Almost indistinguishable from float16. Huge resource use and slow. Not recommended for normal use.|
## How to run in `llama.cpp`
I use the following command line; adjust for your tastes and needs:
```
./main -t 18 -m OpenAssistant-30B-epoch7.ggmlv3.q4_0.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "<|prompter|>Write a very story about llamas <|assistant|>:"
```
Change `-t 18` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`.
## How to run in `text-generation-webui`
GGML models can be loaded into text-generation-webui by installing the llama.cpp module, then placing the ggml model file in a model folder as usual.
Further instructions here: [text-generation-webui/docs/llama.cpp-models.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp-models.md).
Note: at this time text-generation-webui will likely not support the newly updated llama.cpp quantisation methods.
**Thireus** has written a [great guide on how to update it to the latest llama.cpp code](https://huggingface.co/TheBloke/wizardLM-7B-GGML/discussions/5) so that you can likely get support for the new quantisation methods sooner.
## Want to support my work?
I've had a lot of people ask if they can contribute. I love providing models and helping people, but it is starting to rack up pretty big cloud computing bills.
So if you're able and willing to contribute, it'd be most gratefully received and will help me to keep providing models, and work on various AI projects.
Donaters will get priority support on any and all AI/LLM/model questions, and I'll gladly quantise any model you'd like to try.
* Patreon: coming soon! (just awaiting approval)
* Ko-Fi: https://ko-fi.com/TheBlokeAI
* Discord: https://discord.gg/UBgz4VXf
# Original model card
```
llama-30b-sft-7:
dtype: fp16
log_dir: "llama_log_30b"
learning_rate: 1e-5
model_name: /home/ubuntu/Open-Assistant/model/model_training/.saved/llama-30b-super-pretrain/checkpoint-3500
#model_name: OpenAssistant/llama-30b-super-pretrain
output_dir: llama_model_30b
deepspeed_config: configs/zero3_config_sft.json
weight_decay: 0.0
residual_dropout: 0.0
max_length: 2048
use_flash_attention: true
warmup_steps: 20
gradient_checkpointing: true
gradient_accumulation_steps: 12
per_device_train_batch_size: 2
per_device_eval_batch_size: 3
eval_steps: 101
save_steps: 485
num_train_epochs: 4
save_total_limit: 3
use_custom_sampler: true
sort_by_length: false
#save_strategy: steps
save_strategy: epoch
datasets:
- oasst_export:
lang: "bg,ca,cs,da,de,en,es,fr,hr,hu,it,nl,pl,pt,ro,ru,sl,sr,sv,uk"
input_file_path: 2023-04-12_oasst_release_ready_synth.jsonl.gz
val_split: 0.05
- vicuna:
val_split: 0.05
max_val_set: 800
fraction: 1.0
- dolly15k:
val_split: 0.05
max_val_set: 300
- grade_school_math_instructions:
val_split: 0.05
- code_alpaca:
val_split: 0.05
max_val_set: 250
```
- **OASST dataset paper:** https://arxiv.org/abs/2304.07327