TheBloke commited on
Commit
1e19c18
1 Parent(s): f874595

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +305 -0
README.md ADDED
@@ -0,0 +1,305 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: https://huggingface.co/royallab/Pygmalion-2-13b-SuperCOT
3
+ inference: false
4
+ language:
5
+ - en
6
+ library_name: transformers
7
+ license: llama2
8
+ model_creator: The Royal Lab
9
+ model_name: Pygmalion 2 13B SuperCOT
10
+ model_type: llama
11
+ pipeline_tag: text-generation
12
+ prompt_template: 'Below is an instruction that describes a task. Write a response
13
+ that appropriately completes the request.
14
+
15
+
16
+ ### Instruction:
17
+
18
+ {prompt}
19
+
20
+
21
+ ### Response:
22
+
23
+ '
24
+ quantized_by: TheBloke
25
+ tags:
26
+ - llama
27
+ - llama-2
28
+ ---
29
+
30
+ <!-- header start -->
31
+ <!-- 200823 -->
32
+ <div style="width: auto; margin-left: auto; margin-right: auto">
33
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
34
+ </div>
35
+ <div style="display: flex; justify-content: space-between; width: 100%;">
36
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
37
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
38
+ </div>
39
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
40
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
41
+ </div>
42
+ </div>
43
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
44
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
45
+ <!-- header end -->
46
+
47
+ # Pygmalion 2 13B SuperCOT - AWQ
48
+ - Model creator: [The Royal Lab](https://huggingface.co/royallab)
49
+ - Original model: [Pygmalion 2 13B SuperCOT](https://huggingface.co/royallab/Pygmalion-2-13b-SuperCOT)
50
+
51
+ <!-- description start -->
52
+ ## Description
53
+
54
+ This repo contains AWQ model files for [The Royal Lab's Pygmalion 2 13B SuperCOT](https://huggingface.co/royallab/Pygmalion-2-13b-SuperCOT).
55
+
56
+
57
+ ### About AWQ
58
+
59
+ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference.
60
+
61
+ It is also now supported by continuous batching server [vLLM](https://github.com/vllm-project/vllm), allowing use of AWQ models for high-throughput concurrent inference in multi-user server scenarios. Note that, at the time of writing, overall throughput is still lower than running vLLM with unquantised models, however using AWQ enables using much smaller GPUs which can lead to easier deployment and overall cost savings. For example, a 70B model can be run on 1 x 48GB GPU instead of 2 x 80GB.
62
+ <!-- description end -->
63
+ <!-- repositories-available start -->
64
+ ## Repositories available
65
+
66
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Pygmalion-2-13B-SuperCOT-AWQ)
67
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Pygmalion-2-13B-SuperCOT-GPTQ)
68
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Pygmalion-2-13B-SuperCOT-GGUF)
69
+ * [The Royal Lab's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/royallab/Pygmalion-2-13b-SuperCOT)
70
+ <!-- repositories-available end -->
71
+
72
+ <!-- prompt-template start -->
73
+ ## Prompt template: Alpaca
74
+
75
+ ```
76
+ Below is an instruction that describes a task. Write a response that appropriately completes the request.
77
+
78
+ ### Instruction:
79
+ {prompt}
80
+
81
+ ### Response:
82
+
83
+ ```
84
+
85
+ <!-- prompt-template end -->
86
+
87
+
88
+ <!-- README_AWQ.md-provided-files start -->
89
+ ## Provided files and AWQ parameters
90
+
91
+ For my first release of AWQ models, I am releasing 128g models only. I will consider adding 32g as well if there is interest, and once I have done perplexity and evaluation comparisons, but at this time 32g models are still not fully tested with AutoAWQ and vLLM.
92
+
93
+ Models are released as sharded safetensors files.
94
+
95
+ | Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
96
+ | ------ | ---- | -- | ----------- | ------- | ---- |
97
+ | [main](https://huggingface.co/TheBloke/Pygmalion-2-13B-SuperCOT-AWQ/tree/main) | 4 | 128 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 7.25 GB
98
+
99
+ <!-- README_AWQ.md-provided-files end -->
100
+
101
+ <!-- README_AWQ.md-use-from-vllm start -->
102
+ ## Serving this model from vLLM
103
+
104
+ Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).
105
+
106
+ - When using vLLM as a server, pass the `--quantization awq` parameter, for example:
107
+
108
+ ```shell
109
+ python3 python -m vllm.entrypoints.api_server --model TheBloke/Pygmalion-2-13B-SuperCOT-AWQ --quantization awq
110
+ ```
111
+
112
+ When using vLLM from Python code, pass the `quantization=awq` parameter, for example:
113
+
114
+ ```python
115
+ from vllm import LLM, SamplingParams
116
+
117
+ prompts = [
118
+ "Hello, my name is",
119
+ "The president of the United States is",
120
+ "The capital of France is",
121
+ "The future of AI is",
122
+ ]
123
+ sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
124
+
125
+ llm = LLM(model="TheBloke/Pygmalion-2-13B-SuperCOT-AWQ", quantization="awq")
126
+
127
+ outputs = llm.generate(prompts, sampling_params)
128
+
129
+ # Print the outputs.
130
+ for output in outputs:
131
+ prompt = output.prompt
132
+ generated_text = output.outputs[0].text
133
+ print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
134
+ ```
135
+ <!-- README_AWQ.md-use-from-vllm start -->
136
+
137
+ <!-- README_AWQ.md-use-from-python start -->
138
+ ## How to use this AWQ model from Python code
139
+
140
+ ### Install the necessary packages
141
+
142
+ Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.0.2 or later
143
+
144
+ ```shell
145
+ pip3 install autoawq
146
+ ```
147
+
148
+ If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead:
149
+
150
+ ```shell
151
+ pip3 uninstall -y autoawq
152
+ git clone https://github.com/casper-hansen/AutoAWQ
153
+ cd AutoAWQ
154
+ pip3 install .
155
+ ```
156
+
157
+ ### You can then try the following example code
158
+
159
+ ```python
160
+ from awq import AutoAWQForCausalLM
161
+ from transformers import AutoTokenizer
162
+
163
+ model_name_or_path = "TheBloke/Pygmalion-2-13B-SuperCOT-AWQ"
164
+
165
+ # Load model
166
+ model = AutoAWQForCausalLM.from_quantized(model_name_or_path, fuse_layers=True,
167
+ trust_remote_code=False, safetensors=True)
168
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=False)
169
+
170
+ prompt = "Tell me about AI"
171
+ prompt_template=f'''Below is an instruction that describes a task. Write a response that appropriately completes the request.
172
+
173
+ ### Instruction:
174
+ {prompt}
175
+
176
+ ### Response:
177
+
178
+ '''
179
+
180
+ print("\n\n*** Generate:")
181
+
182
+ tokens = tokenizer(
183
+ prompt_template,
184
+ return_tensors='pt'
185
+ ).input_ids.cuda()
186
+
187
+ # Generate output
188
+ generation_output = model.generate(
189
+ tokens,
190
+ do_sample=True,
191
+ temperature=0.7,
192
+ top_p=0.95,
193
+ top_k=40,
194
+ max_new_tokens=512
195
+ )
196
+
197
+ print("Output: ", tokenizer.decode(generation_output[0]))
198
+
199
+ # Inference can also be done using transformers' pipeline
200
+ from transformers import pipeline
201
+
202
+ print("*** Pipeline:")
203
+ pipe = pipeline(
204
+ "text-generation",
205
+ model=model,
206
+ tokenizer=tokenizer,
207
+ max_new_tokens=512,
208
+ do_sample=True,
209
+ temperature=0.7,
210
+ top_p=0.95,
211
+ top_k=40,
212
+ repetition_penalty=1.1
213
+ )
214
+
215
+ print(pipe(prompt_template)[0]['generated_text'])
216
+ ```
217
+ <!-- README_AWQ.md-use-from-python end -->
218
+
219
+ <!-- README_AWQ.md-compatibility start -->
220
+ ## Compatibility
221
+
222
+ The files provided are tested to work with [AutoAWQ](https://github.com/casper-hansen/AutoAWQ), and [vLLM](https://github.com/vllm-project/vllm).
223
+
224
+ [Huggingface Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference) is not yet compatible with AWQ, but a PR is open which should bring support soon: [TGI PR #781](https://github.com/huggingface/text-generation-inference/issues/781).
225
+ <!-- README_AWQ.md-compatibility end -->
226
+
227
+ <!-- footer start -->
228
+ <!-- 200823 -->
229
+ ## Discord
230
+
231
+ For further support, and discussions on these models and AI in general, join us at:
232
+
233
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
234
+
235
+ ## Thanks, and how to contribute
236
+
237
+ Thanks to the [chirper.ai](https://chirper.ai) team!
238
+
239
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
240
+
241
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
242
+
243
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
244
+
245
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
246
+
247
+ * Patreon: https://patreon.com/TheBlokeAI
248
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
249
+
250
+ **Special thanks to**: Aemon Algiz.
251
+
252
+ **Patreon special mentions**: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov
253
+
254
+
255
+ Thank you to all my generous patrons and donaters!
256
+
257
+ And thank you again to a16z for their generous grant.
258
+
259
+ <!-- footer end -->
260
+
261
+ # Original model card: The Royal Lab's Pygmalion 2 13B SuperCOT
262
+
263
+
264
+ # Model Card: Pygmalion-2-13b-SuperCOT
265
+
266
+ This is a merge between:
267
+ - [Pygmalion 2 13b](https://huggingface.co/PygmalionAI/pygmalion-2-13b)
268
+ - [Ausboss's Llama2 SuperCOT loras](https://huggingface.co/ausboss/llama2-13b-supercot-loras) at a weight of 1.00.
269
+
270
+ Quantizations provided by us and TheBloke:
271
+ - [GGUF](https://huggingface.co/royallab/Pygmalion-2-13b-SuperCOT-GGUF)
272
+ - [GGUF (TheBloke)](https://huggingface.co/TheBloke/Pygmalion-2-13B-SuperCOT-GGUF)
273
+ - [GPTQ](https://huggingface.co/TheBloke/Pygmalion-2-13B-SuperCOT-GPTQ)
274
+
275
+ The merge was performed by a commandline version of [EzTrainer](https://github.com/CoffeeVampir3/ez-trainer) by CoffeeVampire/Blackroot via [zaraki-tools](https://github.com/CoffeeVampir3/ez-trainer) by Zaraki.
276
+
277
+ The intended objective is to make Pygmalion-2 smarter and try to make it drift off less.
278
+
279
+ The SuperCOT lora was merged at a weight of 1.
280
+
281
+ ## Usage:
282
+
283
+ Since this is a merge between Pygmalion-2 and SuperCOT, the following instruction formats should work:
284
+
285
+ Metharme:
286
+
287
+ ```
288
+ <|system|>This is a text adventure game. Describe the scenario to the user and give him three options to pick from on each turn.<|user|>Start!<|model|>
289
+ ```
290
+
291
+ Alpaca:
292
+
293
+ ```
294
+ ### Instruction:
295
+ Your instruction or question here.
296
+ ### Response:
297
+ ```
298
+
299
+ ## Bias, Risks, and Limitations
300
+
301
+ The model will show biases similar to those observed in niche roleplaying forums on the Internet, besides those exhibited by the base model. It is not intended for supplying factual information or advice in any form.
302
+
303
+ ## Training Details
304
+
305
+ This model is merged and can be reproduced using the tools mentioned above. Please refer to all provided links for extra model-specific details.