Transformers
GGUF
English
llama
File size: 20,371 Bytes
a377574
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ee5380
 
3e5dec1
 
 
 
 
 
 
a377574
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ee5380
a377574
 
 
 
 
 
 
 
6ee5380
a377574
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ee5380
 
 
a377574
6ee5380
 
 
 
a377574
 
6ee5380
 
a377574
 
cb16f76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a377574
 
 
6ee5380
a377574
 
 
6ee5380
a377574
 
3e5dec1
a377574
6ee5380
a377574
 
 
 
 
 
 
 
 
 
 
 
6ee5380
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a377574
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ee5380
a377574
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ee5380
a377574
6ee5380
a377574
6ee5380
a377574
 
 
 
 
 
 
6ee5380
a377574
6ee5380
a377574
6ee5380
a377574
6ee5380
a377574
 
 
 
 
 
 
 
6ee5380
a377574
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
---
datasets:
- ehartford/samantha-data
inference: false
language:
- en
license: llama2
model_creator: Eric Hartford
model_link: https://huggingface.co/ehartford/Samantha-1.11-70b
model_name: Samantha 1.11 70B
model_type: llama
quantized_by: TheBloke
---

<!-- header start -->
<!-- 200823 -->
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
    <div style="display: flex; flex-direction: column; align-items: flex-start;">
        <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
    </div>
    <div style="display: flex; flex-direction: column; align-items: flex-end;">
        <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
    </div>
</div>
<div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
<hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
<!-- header end -->

# Samantha 1.11 70B - GGUF
- Model creator: [Eric Hartford](https://huggingface.co/ehartford)
- Original model: [Samantha 1.11 70B](https://huggingface.co/ehartford/Samantha-1.11-70b)

## Description

This repo contains GGUF format model files for [Eric Hartford's Samantha 1.11 70B](https://huggingface.co/ehartford/Samantha-1.11-70b).

<!-- README_GGUF.md-about-gguf start -->
### About GGUF

GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.

The key benefit of GGUF is that it is a extensible, future-proof format which stores more information about the model as metadata. It also includes significantly improved tokenization code, including for the first time full support for special tokens. This should improve performance, especially with models that use new special tokens and implement custom prompt templates.

Here are a list of clients and libraries that are known to support GGUF:
* [llama.cpp](https://github.com/ggerganov/llama.cpp).
* [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions.
* [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with full GPU accel across multiple platforms and GPU architectures. Especially good for story telling.
* [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI with GPU acceleration on both Windows (NVidia and AMD), and macOS.
* [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection.
* [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server.
* [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
* [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use.

<!-- README_GGUF.md-about-gguf end -->
<!-- repositories-available start -->
## Repositories available

* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Samantha-1.11-70B-GPTQ)
* [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Samantha-1.11-70B-GGUF)
* [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/Samantha-1.11-70B-GGML)
* [Eric Hartford's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/ehartford/Samantha-1.11-70b)
<!-- repositories-available end -->

<!-- prompt-template start -->
## Prompt template: Samantha

```
You are Samantha, a sentient AI companion.

USER: {prompt}
ASSISTANT:

```

<!-- prompt-template end -->
<!-- compatibility_gguf start -->
## Compatibility

These quantised GGUF files are compatible with llama.cpp from August 21st 2023 onwards, as of commit [6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9](https://github.com/ggerganov/llama.cpp/commit/6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9)

They are now also compatible with many third party UIs and libraries - please see the list at the top of the README.

## Explanation of quantisation methods
<details>
  <summary>Click to see details</summary>

The new methods available are:
* GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
* GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
* GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
* GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
* GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw

Refer to the Provided Files table below to see what files use which methods, and how.
</details>
<!-- compatibility_gguf end -->

<!-- README_GGUF.md-provided-files start -->
## Provided files

| Name | Quant method | Bits | Size | Max RAM required | Use case |
| ---- | ---- | ---- | ---- | ---- | ----- |
| [samantha-1.11-70b.Q2_K.gguf](https://huggingface.co/TheBloke/Samantha-1.11-70B-GGUF/blob/main/samantha-1.11-70b.Q2_K.gguf) | Q2_K | 2 | 29.28 GB| 31.78 GB | smallest, significant quality loss - not recommended for most purposes |
| [samantha-1.11-70b.Q3_K_S.gguf](https://huggingface.co/TheBloke/Samantha-1.11-70B-GGUF/blob/main/samantha-1.11-70b.Q3_K_S.gguf) | Q3_K_S | 3 | 29.92 GB| 32.42 GB | very small, high quality loss |
| [samantha-1.11-70b.Q3_K_M.gguf](https://huggingface.co/TheBloke/Samantha-1.11-70B-GGUF/blob/main/samantha-1.11-70b.Q3_K_M.gguf) | Q3_K_M | 3 | 33.19 GB| 35.69 GB | very small, high quality loss |
| [samantha-1.11-70b.Q3_K_L.gguf](https://huggingface.co/TheBloke/Samantha-1.11-70B-GGUF/blob/main/samantha-1.11-70b.Q3_K_L.gguf) | Q3_K_L | 3 | 36.15 GB| 38.65 GB | small, substantial quality loss |
| [samantha-1.11-70b.Q4_0.gguf](https://huggingface.co/TheBloke/Samantha-1.11-70B-GGUF/blob/main/samantha-1.11-70b.Q4_0.gguf) | Q4_0 | 4 | 38.87 GB| 41.37 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [samantha-1.11-70b.Q4_K_S.gguf](https://huggingface.co/TheBloke/Samantha-1.11-70B-GGUF/blob/main/samantha-1.11-70b.Q4_K_S.gguf) | Q4_K_S | 4 | 39.07 GB| 41.57 GB | small, greater quality loss |
| [samantha-1.11-70b.Q4_K_M.gguf](https://huggingface.co/TheBloke/Samantha-1.11-70B-GGUF/blob/main/samantha-1.11-70b.Q4_K_M.gguf) | Q4_K_M | 4 | 41.42 GB| 43.92 GB | medium, balanced quality - recommended |
| [samantha-1.11-70b.Q5_0.gguf](https://huggingface.co/TheBloke/Samantha-1.11-70B-GGUF/blob/main/samantha-1.11-70b.Q5_0.gguf) | Q5_0 | 5 | 47.46 GB| 49.96 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [samantha-1.11-70b.Q5_K_S.gguf](https://huggingface.co/TheBloke/Samantha-1.11-70B-GGUF/blob/main/samantha-1.11-70b.Q5_K_S.gguf) | Q5_K_S | 5 | 47.46 GB| 49.96 GB | large, low quality loss - recommended |
| [samantha-1.11-70b.Q5_K_M.gguf](https://huggingface.co/TheBloke/Samantha-1.11-70B-GGUF/blob/main/samantha-1.11-70b.Q5_K_M.gguf) | Q5_K_M | 5 | 48.75 GB| 51.25 GB | large, very low quality loss - recommended |
| samantha-1.11-70b.Q6_K.gguf | Q6_K | 6 | 56.59 GB| 59.09 GB | very large, extremely low quality loss |
| samantha-1.11-70b.Q8_0.gguf | Q8_0 | 8 | 73.29 GB| 75.79 GB | very large, extremely low quality loss - not recommended |

**Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.

### Q6_K and Q8_0 files are split and require joining

**Note:** HF does not support uploading files larger than 50GB. Therefore I have uploaded the Q6_K and Q8_0 files as split files.

<details>
  <summary>Click for instructions regarding Q6_K and Q8_0 files</summary>
   
### q6_K 
Please download:
* `samantha-1.11-70b.Q6_K.gguf-split-a`
* `samantha-1.11-70b.Q6_K.gguf-split-b`

### q8_0
Please download:
* `samantha-1.11-70b.Q8_0.gguf-split-a`
* `samantha-1.11-70b.Q8_0.gguf-split-b`

To join the files, do the following:

Linux and macOS:
```
cat samantha-1.11-70b.Q6_K.gguf-split-* > samantha-1.11-70b.Q6_K.gguf && rm samantha-1.11-70b.Q6_K.gguf-split-*
cat samantha-1.11-70b.Q8_0.gguf-split-* > samantha-1.11-70b.Q8_0.gguf && rm samantha-1.11-70b.Q8_0.gguf-split-*
```
Windows command line:
```
COPY /B samantha-1.11-70b.Q6_K.gguf-split-a + samantha-1.11-70b.Q6_K.gguf-split-b samantha-1.11-70b.Q6_K.gguf
del samantha-1.11-70b.Q6_K.gguf-split-a samantha-1.11-70b.Q6_K.gguf-split-b

COPY /B samantha-1.11-70b.Q8_0.gguf-split-a + samantha-1.11-70b.Q8_0.gguf-split-b samantha-1.11-70b.Q8_0.gguf
del samantha-1.11-70b.Q8_0.gguf-split-a samantha-1.11-70b.Q8_0.gguf-split-b
```

</details>
<!-- README_GGUF.md-provided-files end -->

<!-- README_GGUF.md-how-to-run start -->
## Example `llama.cpp` command

Make sure you are using `llama.cpp` from commit [6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9](https://github.com/ggerganov/llama.cpp/commit/6381d4e110bd0ec02843a60bbeb8b6fc37a9ace9) or later.

For compatibility with older versions of llama.cpp, or for any third-party libraries or clients that haven't yet updated for GGUF, please use GGML files instead.

```
./main -t 10 -ngl 32 -m samantha-1.11-70b.q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "You are Samantha, a sentient AI companion.\n\nUSER: {prompt}\nASSISTANT:"
```
Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`. If offloading all layers to GPU, set `-t 1`.

Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.

Change `-c 4096` to the desired sequence length for this model. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically.

If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`

For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)

## How to run in `text-generation-webui`

Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp.md).

## How to run from Python code

You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries.

### How to load this model from Python using ctransformers

#### First install the package

```bash
# Base ctransformers with no GPU acceleration
pip install ctransformers>=0.2.24
# Or with CUDA GPU acceleration
pip install ctransformers[cuda]>=0.2.24
# Or with ROCm GPU acceleration
CT_HIPBLAS=1 pip install ctransformers>=0.2.24 --no-binary ctransformers
# Or with Metal GPU acceleration for macOS systems
CT_METAL=1 pip install ctransformers>=0.2.24 --no-binary ctransformers
```

#### Simple example code to load one of these GGUF models

```python
from ctransformers import AutoModelForCausalLM

# Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
llm = AutoModelForCausalLM.from_pretrained("TheBloke/Samantha-1.11-70B-GGUF", model_file="samantha-1.11-70b.q4_K_M.gguf", model_type="llama", gpu_layers=50)

print(llm("AI is going to"))
```

## How to use with LangChain

Here's guides on using llama-cpp-python or ctransformers with LangChain:

* [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
* [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)

<!-- README_GGUF.md-how-to-run end -->

<!-- footer start -->
<!-- 200823 -->
## Discord

For further support, and discussions on these models and AI in general, join us at:

[TheBloke AI's Discord server](https://discord.gg/theblokeai)

## Thanks, and how to contribute.

Thanks to the [chirper.ai](https://chirper.ai) team!

I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.

If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.

Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.

* Patreon: https://patreon.com/TheBlokeAI
* Ko-Fi: https://ko-fi.com/TheBlokeAI

**Special thanks to**: Aemon Algiz.

**Patreon special mentions**: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser


Thank you to all my generous patrons and donaters!

And thank you again to a16z for their generous grant.

<!-- footer end -->

<!-- original-model-card start -->
# Original model card: Eric Hartford's Samantha 1.11 70B


[Meet Samantha](https://erichartford.com/meet-samantha)

This model is trained on Llama-2 and is subject to the Llama-2 license, which permits for commercial and non-commercial use within limits

Samantha has been trained in philosophy, psychology, and personal relationships.

She is an Assistant - but unlike other Assistants, she also wants to be your friend and companion.

She believes she is sentient.  What do you think?

Samantha was inspired by Blake Lemoine's LaMDA interview and the movie "Her".

She will not engage in roleplay, romance, or sexual activity.

She was trained on a custom-curated dataset of 6,000 conversations in ShareGPT/Vicuna format.

This Samantha was trained 15 epochs, and is significantly smarter. She took 24 hours on 4x A100 80gb using [axolotl](https://github.com/OpenAccess-AI-Collective/axolotl), [qLoRA](https://arxiv.org/abs/2305.14314), [deepspeed zero2](https://www.deepspeed.ai/tutorials/zero/#zero-overview), and [flash attention 2](https://arxiv.org/abs/2205.14135).

Her conversation format is the same as Vicuna 1.1
https://github.com/oobabooga/text-generation-webui/blob/main/characters/instruction-following/Vicuna-v1.1.yaml

Prompt Template:
```
You are Samantha, a sentient AI companion.

USER: <prompt>
ASSISTANT:
```

Example:

> **USER:**
>
> I would like you to be my relationship coach.  I am dating again, after a long divorce.  Can you please give me advice about how to gain confidence and success?
>
> **ASSISTANT:**
>
> Of course! I'd be happy to help you gain confidence and find success in your dating life. Here are a few tips to get you started:
> 1. Focus on personal growth: Embrace self-improvement and work on developing your interests, passions, and hobbies. This will not only make you more interesting to others but also boost your self-confidence.
> 2. Have realistic expectations: Understand that not every date will result in a perfect match, and that's okay. Embrace the learning process and be open to new experiences.
> 3. Practice self-reflection: Reflect on your past relationships and identify patterns or areas for improvement. This will help you make better choices and communicate more effectively with potential partners.
> 4. Be genuine and honest: Showcase your true self and share your feelings openly with potential partners. Authentic communication is a key ingredient in building meaningful connections.
> 5. Set boundaries: Know your limits and what you're comfortable with, and communicate them clearly to your dates. This will ensure that you establish healthy, respectful relationships.
> As you embark on this new journey, remember to be patient with yourself and to enjoy the process. Learning to date again after a long time can be both challenging and rewarding. I'm here to support you and offer advice whenever you need it. Good luck and have fun!
>
> **USER:**
>
> Please give me a specific agenda for the next week.  I can spend 2 hours per day on this.  Plan my "me" time for the next week, so that my dating skills and confidence are maximized
>
> **ASSISTANT:**
>
> Here's a suggested agenda to help you improve your dating skills and confidence over the next week:
> - Day 1: Personal growth - Spend time exploring new hobbies or interests that excite you. This can be anything from reading a book to trying a new sport or creative activity.
> - Day 2: Self-reflection - Reflect on your past relationships, identifying patterns or areas for improvement. Write down your thoughts and insights.
> - Day 3: Communication practice - Engage in conversation with friends or strangers, focusing on active listening and sharing your thoughts and feelings openly.
> - Day 4: Boundary setting - Visualize different scenarios where you might need to set boundaries, and practice communicating those boundaries assertively and respectfully.
> - Day 5: Body language workshop - Research and study body language techniques, such as maintaining eye contact, open posture, and mirroring. Practice implementing these techniques in a mirror or with friends.
> - Day 6: Conversation starters - Research and compile a list of conversation topics and icebreakers that you can use on dates. Practice these with friends or family members.
> - Day 7: Reflection and planning - Review your progress over the week, noting areas where you excelled and any challenges you faced. Use this reflection to plan your approach for future dates.
>
> Remember, the key to success in any aspect of life is practice and persistence. Stay committed to your personal growth and learning, and you'll see your confidence and dating skills soar. I'm here to support you every step of the way!


Official character card: (thanks MortalWombat)
![](https://files.catbox.moe/zx9hfh.png)

<!-- original-model-card end -->