TheBloke commited on
Commit
1030d90
1 Parent(s): 30e02f1

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +515 -0
README.md ADDED
@@ -0,0 +1,515 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Unbabel/TowerInstruct-7B-v0.1
3
+ inference: false
4
+ language:
5
+ - en
6
+ - de
7
+ - fr
8
+ - zh
9
+ - pt
10
+ - nl
11
+ - ru
12
+ - ko
13
+ - it
14
+ - es
15
+ license: cc-by-nc-4.0
16
+ metrics:
17
+ - comet
18
+ model_creator: Unbabel
19
+ model_name: TowerInstruct 7B v0.1
20
+ model_type: llama
21
+ pipeline_tag: translation
22
+ prompt_template: '<|im_start|>system
23
+
24
+ {system_message}<|im_end|>
25
+
26
+ <|im_start|>user
27
+
28
+ {prompt}<|im_end|>
29
+
30
+ <|im_start|>assistant
31
+
32
+ '
33
+ quantized_by: TheBloke
34
+ ---
35
+ <!-- markdownlint-disable MD041 -->
36
+
37
+ <!-- header start -->
38
+ <!-- 200823 -->
39
+ <div style="width: auto; margin-left: auto; margin-right: auto">
40
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
41
+ </div>
42
+ <div style="display: flex; justify-content: space-between; width: 100%;">
43
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
44
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
45
+ </div>
46
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
47
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
48
+ </div>
49
+ </div>
50
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
51
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
52
+ <!-- header end -->
53
+
54
+ # TowerInstruct 7B v0.1 - GPTQ
55
+ - Model creator: [Unbabel](https://huggingface.co/Unbabel)
56
+ - Original model: [TowerInstruct 7B v0.1](https://huggingface.co/Unbabel/TowerInstruct-7B-v0.1)
57
+
58
+ <!-- description start -->
59
+ # Description
60
+
61
+ This repo contains GPTQ model files for [Unbabel's TowerInstruct 7B v0.1](https://huggingface.co/Unbabel/TowerInstruct-7B-v0.1).
62
+
63
+ Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
64
+
65
+ <!-- description end -->
66
+ <!-- repositories-available start -->
67
+ ## Repositories available
68
+
69
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/TowerInstruct-7B-v0.1-AWQ)
70
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/TowerInstruct-7B-v0.1-GPTQ)
71
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/TowerInstruct-7B-v0.1-GGUF)
72
+ * [Unbabel's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/Unbabel/TowerInstruct-7B-v0.1)
73
+ <!-- repositories-available end -->
74
+
75
+ <!-- prompt-template start -->
76
+ ## Prompt template: ChatML
77
+
78
+ ```
79
+ <|im_start|>system
80
+ {system_message}<|im_end|>
81
+ <|im_start|>user
82
+ {prompt}<|im_end|>
83
+ <|im_start|>assistant
84
+
85
+ ```
86
+
87
+ <!-- prompt-template end -->
88
+ <!-- licensing start -->
89
+ ## Licensing
90
+
91
+ The creator of the source model has listed its license as `cc-by-nc-4.0`, and this quantization has therefore used that same license.
92
+
93
+ As this model is based on Llama 2, it is also subject to the Meta Llama 2 license terms, and the license files for that are additionally included. It should therefore be considered as being claimed to be licensed under both licenses. I contacted Hugging Face for clarification on dual licensing but they do not yet have an official position. Should this change, or should Meta provide any feedback on this situation, I will update this section accordingly.
94
+
95
+ In the meantime, any questions regarding licensing, and in particular how these two licenses might interact, should be directed to the original model repository: [Unbabel's TowerInstruct 7B v0.1](https://huggingface.co/Unbabel/TowerInstruct-7B-v0.1).
96
+ <!-- licensing end -->
97
+
98
+ <!-- README_GPTQ.md-compatible clients start -->
99
+ ## Known compatible clients / servers
100
+
101
+ GPTQ models are currently supported on Linux (NVidia/AMD) and Windows (NVidia only). macOS users: please use GGUF models.
102
+
103
+ These GPTQ models are known to work in the following inference servers/webuis.
104
+
105
+ - [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
106
+ - [KoboldAI United](https://github.com/henk717/koboldai)
107
+ - [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui)
108
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
109
+
110
+ This may not be a complete list; if you know of others, please let me know!
111
+ <!-- README_GPTQ.md-compatible clients end -->
112
+
113
+ <!-- README_GPTQ.md-provided-files start -->
114
+ ## Provided files, and GPTQ parameters
115
+
116
+ Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
117
+
118
+ Each separate quant is in a different branch. See below for instructions on fetching from different branches.
119
+
120
+ Most GPTQ files are made with AutoGPTQ. Mistral models are currently made with Transformers.
121
+
122
+ <details>
123
+ <summary>Explanation of GPTQ parameters</summary>
124
+
125
+ - Bits: The bit size of the quantised model.
126
+ - GS: GPTQ group size. Higher numbers use less VRAM, but have lower quantisation accuracy. "None" is the lowest possible value.
127
+ - Act Order: True or False. Also known as `desc_act`. True results in better quantisation accuracy. Some GPTQ clients have had issues with models that use Act Order plus Group Size, but this is generally resolved now.
128
+ - Damp %: A GPTQ parameter that affects how samples are processed for quantisation. 0.01 is default, but 0.1 results in slightly better accuracy.
129
+ - GPTQ dataset: The calibration dataset used during quantisation. Using a dataset more appropriate to the model's training can improve quantisation accuracy. Note that the GPTQ calibration dataset is not the same as the dataset used to train the model - please refer to the original model repo for details of the training dataset(s).
130
+ - Sequence Length: The length of the dataset sequences used for quantisation. Ideally this is the same as the model sequence length. For some very long sequence models (16+K), a lower sequence length may have to be used. Note that a lower sequence length does not limit the sequence length of the quantised model. It only impacts the quantisation accuracy on longer inference sequences.
131
+ - ExLlama Compatibility: Whether this file can be loaded with ExLlama, which currently only supports Llama and Mistral models in 4-bit.
132
+
133
+ </details>
134
+
135
+ | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
136
+ | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
137
+ | [main](https://huggingface.co/TheBloke/TowerInstruct-7B-v0.1-GPTQ/tree/main) | 4 | 128 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 3.90 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. |
138
+ | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/TowerInstruct-7B-v0.1-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 4.28 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. |
139
+ | [gptq-8bit--1g-actorder_True](https://huggingface.co/TheBloke/TowerInstruct-7B-v0.1-GPTQ/tree/gptq-8bit--1g-actorder_True) | 8 | None | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 7.01 GB | No | 8-bit, with Act Order. No group size, to lower VRAM requirements. |
140
+ | [gptq-8bit-128g-actorder_True](https://huggingface.co/TheBloke/TowerInstruct-7B-v0.1-GPTQ/tree/gptq-8bit-128g-actorder_True) | 8 | 128 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 7.16 GB | No | 8-bit, with group size 128g for higher inference quality and with Act Order for even higher accuracy. |
141
+ | [gptq-8bit-32g-actorder_True](https://huggingface.co/TheBloke/TowerInstruct-7B-v0.1-GPTQ/tree/gptq-8bit-32g-actorder_True) | 8 | 32 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 7.62 GB | No | 8-bit, with group size 32g and Act Order for maximum inference quality. |
142
+ | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/TowerInstruct-7B-v0.1-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [VMware Open Instruct](https://huggingface.co/datasets/VMware/open-instruct/viewer/) | 4096 | 4.02 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. |
143
+
144
+ <!-- README_GPTQ.md-provided-files end -->
145
+
146
+ <!-- README_GPTQ.md-download-from-branches start -->
147
+ ## How to download, including from branches
148
+
149
+ ### In text-generation-webui
150
+
151
+ To download from the `main` branch, enter `TheBloke/TowerInstruct-7B-v0.1-GPTQ` in the "Download model" box.
152
+
153
+ To download from another branch, add `:branchname` to the end of the download name, eg `TheBloke/TowerInstruct-7B-v0.1-GPTQ:gptq-4bit-32g-actorder_True`
154
+
155
+ ### From the command line
156
+
157
+ I recommend using the `huggingface-hub` Python library:
158
+
159
+ ```shell
160
+ pip3 install huggingface-hub
161
+ ```
162
+
163
+ To download the `main` branch to a folder called `TowerInstruct-7B-v0.1-GPTQ`:
164
+
165
+ ```shell
166
+ mkdir TowerInstruct-7B-v0.1-GPTQ
167
+ huggingface-cli download TheBloke/TowerInstruct-7B-v0.1-GPTQ --local-dir TowerInstruct-7B-v0.1-GPTQ --local-dir-use-symlinks False
168
+ ```
169
+
170
+ To download from a different branch, add the `--revision` parameter:
171
+
172
+ ```shell
173
+ mkdir TowerInstruct-7B-v0.1-GPTQ
174
+ huggingface-cli download TheBloke/TowerInstruct-7B-v0.1-GPTQ --revision gptq-4bit-32g-actorder_True --local-dir TowerInstruct-7B-v0.1-GPTQ --local-dir-use-symlinks False
175
+ ```
176
+
177
+ <details>
178
+ <summary>More advanced huggingface-cli download usage</summary>
179
+
180
+ If you remove the `--local-dir-use-symlinks False` parameter, the files will instead be stored in the central Hugging Face cache directory (default location on Linux is: `~/.cache/huggingface`), and symlinks will be added to the specified `--local-dir`, pointing to their real location in the cache. This allows for interrupted downloads to be resumed, and allows you to quickly clone the repo to multiple places on disk without triggering a download again. The downside, and the reason why I don't list that as the default option, is that the files are then hidden away in a cache folder and it's harder to know where your disk space is being used, and to clear it up if/when you want to remove a download model.
181
+
182
+ The cache location can be changed with the `HF_HOME` environment variable, and/or the `--cache-dir` parameter to `huggingface-cli`.
183
+
184
+ For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
185
+
186
+ To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
187
+
188
+ ```shell
189
+ pip3 install hf_transfer
190
+ ```
191
+
192
+ And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
193
+
194
+ ```shell
195
+ mkdir TowerInstruct-7B-v0.1-GPTQ
196
+ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/TowerInstruct-7B-v0.1-GPTQ --local-dir TowerInstruct-7B-v0.1-GPTQ --local-dir-use-symlinks False
197
+ ```
198
+
199
+ Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
200
+ </details>
201
+
202
+ ### With `git` (**not** recommended)
203
+
204
+ To clone a specific branch with `git`, use a command like this:
205
+
206
+ ```shell
207
+ git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/TowerInstruct-7B-v0.1-GPTQ
208
+ ```
209
+
210
+ Note that using Git with HF repos is strongly discouraged. It will be much slower than using `huggingface-hub`, and will use twice as much disk space as it has to store the model files twice (it stores every byte both in the intended target folder, and again in the `.git` folder as a blob.)
211
+
212
+ <!-- README_GPTQ.md-download-from-branches end -->
213
+ <!-- README_GPTQ.md-text-generation-webui start -->
214
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
215
+
216
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
217
+
218
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
219
+
220
+ 1. Click the **Model tab**.
221
+ 2. Under **Download custom model or LoRA**, enter `TheBloke/TowerInstruct-7B-v0.1-GPTQ`.
222
+
223
+ - To download from a specific branch, enter for example `TheBloke/TowerInstruct-7B-v0.1-GPTQ:gptq-4bit-32g-actorder_True`
224
+ - see Provided Files above for the list of branches for each option.
225
+
226
+ 3. Click **Download**.
227
+ 4. The model will start downloading. Once it's finished it will say "Done".
228
+ 5. In the top left, click the refresh icon next to **Model**.
229
+ 6. In the **Model** dropdown, choose the model you just downloaded: `TowerInstruct-7B-v0.1-GPTQ`
230
+ 7. The model will automatically load, and is now ready for use!
231
+ 8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right.
232
+
233
+ - Note that you do not need to and should not set manual GPTQ parameters any more. These are set automatically from the file `quantize_config.json`.
234
+
235
+ 9. Once you're ready, click the **Text Generation** tab and enter a prompt to get started!
236
+
237
+ <!-- README_GPTQ.md-text-generation-webui end -->
238
+
239
+ <!-- README_GPTQ.md-use-from-tgi start -->
240
+ ## Serving this model from Text Generation Inference (TGI)
241
+
242
+ It's recommended to use TGI version 1.1.0 or later. The official Docker container is: `ghcr.io/huggingface/text-generation-inference:1.1.0`
243
+
244
+ Example Docker parameters:
245
+
246
+ ```shell
247
+ --model-id TheBloke/TowerInstruct-7B-v0.1-GPTQ --port 3000 --quantize gptq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
248
+ ```
249
+
250
+ Example Python code for interfacing with TGI (requires huggingface-hub 0.17.0 or later):
251
+
252
+ ```shell
253
+ pip3 install huggingface-hub
254
+ ```
255
+
256
+ ```python
257
+ from huggingface_hub import InferenceClient
258
+
259
+ endpoint_url = "https://your-endpoint-url-here"
260
+
261
+ prompt = "Tell me about AI"
262
+ prompt_template=f'''<|im_start|>system
263
+ {system_message}<|im_end|>
264
+ <|im_start|>user
265
+ {prompt}<|im_end|>
266
+ <|im_start|>assistant
267
+ '''
268
+
269
+ client = InferenceClient(endpoint_url)
270
+ response = client.text_generation(
271
+ prompt_template,
272
+ max_new_tokens=128,
273
+ do_sample=True,
274
+ temperature=0.7,
275
+ top_p=0.95,
276
+ top_k=40,
277
+ repetition_penalty=1.1
278
+ )
279
+
280
+ print(f"Model output: {response}")
281
+ ```
282
+ <!-- README_GPTQ.md-use-from-tgi end -->
283
+ <!-- README_GPTQ.md-use-from-python start -->
284
+ ## Python code example: inference from this GPTQ model
285
+
286
+ ### Install the necessary packages
287
+
288
+ Requires: Transformers 4.33.0 or later, Optimum 1.12.0 or later, and AutoGPTQ 0.4.2 or later.
289
+
290
+ ```shell
291
+ pip3 install --upgrade transformers optimum
292
+ # If using PyTorch 2.1 + CUDA 12.x:
293
+ pip3 install --upgrade auto-gptq
294
+ # or, if using PyTorch 2.1 + CUDA 11.x:
295
+ pip3 install --upgrade auto-gptq --extra-index-url https://huggingface.github.io/autogptq-index/whl/cu118/
296
+ ```
297
+
298
+ If you are using PyTorch 2.0, you will need to install AutoGPTQ from source. Likewise if you have problems with the pre-built wheels, you should try building from source:
299
+
300
+ ```shell
301
+ pip3 uninstall -y auto-gptq
302
+ git clone https://github.com/PanQiWei/AutoGPTQ
303
+ cd AutoGPTQ
304
+ git checkout v0.5.1
305
+ pip3 install .
306
+ ```
307
+
308
+ ### Example Python code
309
+
310
+ ```python
311
+ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
312
+
313
+ model_name_or_path = "TheBloke/TowerInstruct-7B-v0.1-GPTQ"
314
+ # To use a different branch, change revision
315
+ # For example: revision="gptq-4bit-32g-actorder_True"
316
+ model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
317
+ device_map="auto",
318
+ trust_remote_code=False,
319
+ revision="main")
320
+
321
+ tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
322
+
323
+ prompt = "Write a story about llamas"
324
+ system_message = "You are a story writing assistant"
325
+ prompt_template=f'''<|im_start|>system
326
+ {system_message}<|im_end|>
327
+ <|im_start|>user
328
+ {prompt}<|im_end|>
329
+ <|im_start|>assistant
330
+ '''
331
+
332
+ print("\n\n*** Generate:")
333
+
334
+ input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
335
+ output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
336
+ print(tokenizer.decode(output[0]))
337
+
338
+ # Inference can also be done using transformers' pipeline
339
+
340
+ print("*** Pipeline:")
341
+ pipe = pipeline(
342
+ "text-generation",
343
+ model=model,
344
+ tokenizer=tokenizer,
345
+ max_new_tokens=512,
346
+ do_sample=True,
347
+ temperature=0.7,
348
+ top_p=0.95,
349
+ top_k=40,
350
+ repetition_penalty=1.1
351
+ )
352
+
353
+ print(pipe(prompt_template)[0]['generated_text'])
354
+ ```
355
+ <!-- README_GPTQ.md-use-from-python end -->
356
+
357
+ <!-- README_GPTQ.md-compatibility start -->
358
+ ## Compatibility
359
+
360
+ The files provided are tested to work with Transformers. For non-Mistral models, AutoGPTQ can also be used directly.
361
+
362
+ [ExLlama](https://github.com/turboderp/exllama) is compatible with Llama architecture models (including Mistral, Yi, DeepSeek, SOLAR, etc) in 4-bit. Please see the Provided Files table above for per-file compatibility.
363
+
364
+ For a list of clients/servers, please see "Known compatible clients / servers", above.
365
+ <!-- README_GPTQ.md-compatibility end -->
366
+
367
+ <!-- footer start -->
368
+ <!-- 200823 -->
369
+ ## Discord
370
+
371
+ For further support, and discussions on these models and AI in general, join us at:
372
+
373
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
374
+
375
+ ## Thanks, and how to contribute
376
+
377
+ Thanks to the [chirper.ai](https://chirper.ai) team!
378
+
379
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
380
+
381
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
382
+
383
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
384
+
385
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
386
+
387
+ * Patreon: https://patreon.com/TheBlokeAI
388
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
389
+
390
+ **Special thanks to**: Aemon Algiz.
391
+
392
+ **Patreon special mentions**: Michael Levine, 阿明, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjäreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros
393
+
394
+
395
+ Thank you to all my generous patrons and donaters!
396
+
397
+ And thank you again to a16z for their generous grant.
398
+
399
+ <!-- footer end -->
400
+
401
+ # Original model card: Unbabel's TowerInstruct 7B v0.1
402
+
403
+ # Model Card for TowerInstruct-7B-v0.1
404
+
405
+ ## Model Details
406
+
407
+ ### Model Description
408
+
409
+ TowerInstruct-7B is a language model that results from fine-tuning TowerBase on the TowerBlocks supervised fine-tuning dataset. TowerInstruct-7B-v0.1 is the first model in the series.
410
+ The model is trained to handle several translation-related tasks, such as general machine translation (e.g., sentence- and document-level translation, terminology-aware translation, context-aware translation), automatic post edition, named-entity recognition, gramatical error correction, and paraphrase generation.
411
+ We will release more details in the upcoming technical report.
412
+
413
+ - **Developed by:** Unbabel, Instituto Superior Técnico, CentraleSupélec University of Paris-Saclay
414
+ - **Model type:** A 7B parameter model fine-tuned on a mix of publicly available, synthetic datasets on translation-related tasks, as well as conversational datasets and code instructions.
415
+ - **Language(s) (NLP):** English, Portuguese, Spanish, French, German, Dutch, Italian, Korean, Chinese, Russian
416
+ - **License:** CC-BY-NC-4.0, Llama 2 is licensed under the [LLAMA 2 Community License](https://ai.meta.com/llama/license/), Copyright © Meta Platforms, Inc. All Rights Reserved.
417
+ - **Finetuned from model:** [TowerBase](https://huggingface.co/Unbabel/TowerBase-7B-v0.1)
418
+
419
+ ## Intended uses & limitations
420
+
421
+ The model was initially fine-tuned on a filtered and preprocessed supervised fine-tuning dataset ([TowerBlocks](https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.1)), which contains a diverse range of data sources:
422
+ - Translation
423
+ - Automatic Post Edition
424
+ - Machine Translation Evaluation
425
+ - Context-aware Translation
426
+ - Terminology-aware Translation
427
+ - Multi-reference Translation
428
+ - Named-entity Recognition
429
+ - Paraphrase Generation
430
+ - Synthetic Chat data
431
+ - Code instructions
432
+
433
+ You can find the dataset and all data sources of [TowerBlocks](https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.1) here.
434
+
435
+ Here's how you can run the model using the `pipeline()` function from 🤗 Transformers:
436
+
437
+ ```python
438
+ # Install transformers from source - only needed for versions <= v4.34
439
+ # pip install git+https://github.com/huggingface/transformers.git
440
+ # pip install accelerate
441
+
442
+ import torch
443
+ from transformers import pipeline
444
+
445
+ pipe = pipeline("text-generation", model="Unbabel/TowerInstruct-v0.1", torch_dtype=torch.bfloat16, device_map="auto")
446
+ # We use the tokenizer’s chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
447
+ messages = [
448
+ {"role": "user", "content": "Translate the following text from Portuguese into English.\nPortuguese: Um grupo de investigadores lançou um novo modelo para tarefas relacionadas com tradução.\nEnglish:"},
449
+ ]
450
+ prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
451
+ outputs = pipe(prompt, max_new_tokens=256, do_sample=False)
452
+ print(outputs[0]["generated_text"])
453
+ # <|im_start|>user
454
+ # Translate the following text from Portuguese into English.
455
+ # Portuguese: Um grupo de investigadores lançou um novo modelo para tarefas relacionadas com tradução.
456
+ # English:<|im_end|>
457
+ # <|im_start|>assistant
458
+ # A group of researchers has launched a new model for translation-related tasks.
459
+ ```
460
+
461
+ ### Out-of-Scope Use
462
+
463
+ The model is not guaranteed to perform for languages other than the 10 languages it supports. Even though we trained the model on conversational data and code instructions, it is not intended to be used as a conversational chatbot or code assistant.
464
+
465
+ ## Bias, Risks, and Limitations
466
+
467
+ TowerInstruct-v0.1 has not been aligned to human preferences, so the model may generate problematic outputs (e.g., hallucinations, harmful content, or false statements).
468
+
469
+ ## Prompt Format
470
+
471
+ TowerInstruct-v0.1 was trained using the ChatML prompt templates without any system prompts. An example follows below:
472
+ ```
473
+ <|im_start|>user
474
+ {USER PROMPT}<|im_end|>
475
+ <|im_start|>assistant
476
+ {MODEL RESPONSE}<|im_end|>
477
+ <|im_start|>user
478
+ [...]
479
+ ```
480
+
481
+ ### Supervised tasks
482
+
483
+ The prompts for all supervised tasks can be found in [TowerBlocks](https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.1). We have used multiple prompt templates for each task. While different prompts may offer different outputs, the difference in downstream performance should be very minimal.
484
+
485
+ ## Training Details
486
+
487
+ ### Training Data
488
+
489
+ Link to [TowerBlocks](https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.1).
490
+
491
+ #### Training Hyperparameters
492
+
493
+ The following hyperparameters were used during training:
494
+
495
+ - total_train_batch_size: 256
496
+
497
+ - learning_rate: 7e-06
498
+
499
+ - lr_scheduler_type: cosine
500
+
501
+ - lr_scheduler_warmup_steps: 500
502
+
503
+ - weight_decay: 0.01
504
+
505
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
506
+
507
+ - num_epochs: 4
508
+
509
+ - max_seq_length: 2048
510
+
511
+ ## Citation
512
+
513
+ To be completed.
514
+
515
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)