TheBloke commited on
Commit
1677978
1 Parent(s): 5ecde6d

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +40 -17
README.md CHANGED
@@ -1,13 +1,26 @@
1
  ---
 
2
  inference: false
3
  language:
4
  - en
5
  license: llama2
6
  model_creator: Upstage
7
- model_link: https://huggingface.co/upstage/Llama-2-70b-instruct-v2
8
  model_name: Llama 2 70B Instruct v2
9
  model_type: llama
10
  pipeline_tag: text-generation
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  quantized_by: TheBloke
12
  tags:
13
  - upstage
@@ -48,9 +61,9 @@ Multiple GPTQ parameter permutations are provided; see Provided Files below for
48
  <!-- repositories-available start -->
49
  ## Repositories available
50
 
 
51
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Upstage-Llama-2-70B-instruct-v2-GPTQ)
52
  * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Upstage-Llama-2-70B-instruct-v2-GGUF)
53
- * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference (deprecated)](https://huggingface.co/TheBloke/Upstage-Llama-2-70B-instruct-v2-GGML)
54
  * [Upstage's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/upstage/Llama-2-70b-instruct-v2)
55
  <!-- repositories-available end -->
56
 
@@ -70,6 +83,7 @@ Multiple GPTQ parameter permutations are provided; see Provided Files below for
70
 
71
  <!-- prompt-template end -->
72
 
 
73
  <!-- README_GPTQ.md-provided-files start -->
74
  ## Provided files and GPTQ parameters
75
 
@@ -94,24 +108,24 @@ All recent GPTQ files are made with AutoGPTQ, and all files in non-main branches
94
 
95
  | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
96
  | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
97
- | [main](https://huggingface.co/TheBloke/Upstage-Llama-2-70B-instruct-v2-GPTQ/tree/main) | 4 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 35.33 GB | Yes | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
98
- | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/Upstage-Llama-2-70B-instruct-v2-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 40.66 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
99
- | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/Upstage-Llama-2-70B-instruct-v2-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 37.99 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
100
- | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/Upstage-Llama-2-70B-instruct-v2-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 36.65 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
101
  | [gptq-3bit--1g-actorder_True](https://huggingface.co/TheBloke/Upstage-Llama-2-70B-instruct-v2-GPTQ/tree/gptq-3bit--1g-actorder_True) | 3 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 26.78 GB | No | 3-bit, with Act Order and no group size. Lowest possible VRAM requirements. May be lower quality than 3-bit 128g. |
102
  | [gptq-3bit-128g-actorder_False](https://huggingface.co/TheBloke/Upstage-Llama-2-70B-instruct-v2-GPTQ/tree/gptq-3bit-128g-actorder_False) | 3 | 128 | No | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 28.03 GB | No | 3-bit, with group size 128g but no act-order. Slightly higher VRAM requirements than 3-bit None. |
103
- | [gptq-3bit-128g-actorder_True](https://huggingface.co/TheBloke/Upstage-Llama-2-70B-instruct-v2-GPTQ/tree/gptq-3bit-128g-actorder_True) | 3 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 28.03 GB | No | 3-bit, with group size 128g and act-order. Higher quality than 128g-False but poor AutoGPTQ CUDA speed. |
104
- | [gptq-3bit-64g-actorder_True](https://huggingface.co/TheBloke/Upstage-Llama-2-70B-instruct-v2-GPTQ/tree/gptq-3bit-64g-actorder_True) | 3 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 29.30 GB | No | 3-bit, with group size 64g and act-order. Poor AutoGPTQ CUDA speed. |
105
 
106
  <!-- README_GPTQ.md-provided-files end -->
107
 
108
  <!-- README_GPTQ.md-download-from-branches start -->
109
  ## How to download from branches
110
 
111
- - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/Upstage-Llama-2-70B-instruct-v2-GPTQ:gptq-4bit-32g-actorder_True`
112
  - With Git, you can clone a branch with:
113
  ```
114
- git clone --single-branch --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/Upstage-Llama-2-70B-instruct-v2-GPTQ
115
  ```
116
  - In Python Transformers code, the branch is the `revision` parameter; see below.
117
  <!-- README_GPTQ.md-download-from-branches end -->
@@ -124,7 +138,7 @@ It is strongly recommended to use the text-generation-webui one-click-installers
124
 
125
  1. Click the **Model tab**.
126
  2. Under **Download custom model or LoRA**, enter `TheBloke/Upstage-Llama-2-70B-instruct-v2-GPTQ`.
127
- - To download from a specific branch, enter for example `TheBloke/Upstage-Llama-2-70B-instruct-v2-GPTQ:gptq-4bit-32g-actorder_True`
128
  - see Provided Files above for the list of branches for each option.
129
  3. Click **Download**.
130
  4. The model will start downloading. Once it's finished it will say "Done".
@@ -172,10 +186,10 @@ from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
172
 
173
  model_name_or_path = "TheBloke/Upstage-Llama-2-70B-instruct-v2-GPTQ"
174
  # To use a different branch, change revision
175
- # For example: revision="gptq-4bit-32g-actorder_True"
176
  model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
177
- torch_dtype=torch.float16,
178
  device_map="auto",
 
179
  revision="main")
180
 
181
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
@@ -194,7 +208,7 @@ prompt_template=f'''### System:
194
  print("\n\n*** Generate:")
195
 
196
  input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
197
- output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512)
198
  print(tokenizer.decode(output[0]))
199
 
200
  # Inference can also be done using transformers' pipeline
@@ -205,9 +219,11 @@ pipe = pipeline(
205
  model=model,
206
  tokenizer=tokenizer,
207
  max_new_tokens=512,
 
208
  temperature=0.7,
209
  top_p=0.95,
210
- repetition_penalty=1.15
 
211
  )
212
 
213
  print(pipe(prompt_template)[0]['generated_text'])
@@ -232,10 +248,12 @@ For further support, and discussions on these models and AI in general, join us
232
 
233
  [TheBloke AI's Discord server](https://discord.gg/theblokeai)
234
 
235
- ## Thanks, and how to contribute.
236
 
237
  Thanks to the [chirper.ai](https://chirper.ai) team!
238
 
 
 
239
  I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
240
 
241
  If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
@@ -247,7 +265,7 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
247
 
248
  **Special thanks to**: Aemon Algiz.
249
 
250
- **Patreon special mentions**: Russ Johnson, J, alfie_i, Alex, NimbleBox.ai, Chadd, Mandus, Nikolai Manek, Ken Nordquist, ya boyyy, Illia Dulskyi, Viktor Bowallius, vamX, Iucharbius, zynix, Magnesian, Clay Pascal, Pierre Kircher, Enrico Ros, Tony Hughes, Elle, Andrey, knownsqashed, Deep Realms, Jerry Meng, Lone Striker, Derek Yates, Pyrater, Mesiah Bishop, James Bentley, Femi Adebogun, Brandon Frisco, SuperWojo, Alps Aficionado, Michael Dempsey, Vitor Caleffi, Will Dee, Edmond Seymore, usrbinkat, LangChain4j, Kacper Wikieł, Luke Pendergrass, John Detwiler, theTransient, Nathan LeClaire, Tiffany J. Kim, biorpg, Eugene Pentland, Stanislav Ovsiannikov, Fred von Graf, terasurfer, Kalila, Dan Guido, Nitin Borwankar, 阿明, Ai Maven, John Villwock, Gabriel Puliatti, Stephen Murray, Asp the Wyvern, danny, Chris Smitley, ReadyPlayerEmma, S_X, Daniel P. Andersen, Olakabola, Jeffrey Morgan, Imad Khwaja, Caitlyn Gatomon, webtim, Alicia Loh, Trenton Dambrowitz, Swaroop Kallakuri, Erik Bjäreholt, Leonard Tan, Spiking Neurons AB, Luke @flexchar, Ajan Kanaga, Thomas Belote, Deo Leter, RoA, Willem Michiel, transmissions 11, subjectnull, Matthew Berman, Joseph William Delisle, David Ziegler, Michael Davis, Johann-Peter Hartmann, Talal Aujan, senxiiz, Artur Olbinski, Rainer Wilmers, Spencer Kim, Fen Risland, Cap'n Zoog, Rishabh Srivastava, Michael Levine, Geoffrey Montalvo, Sean Connelly, Alexandros Triantafyllidis, Pieter, Gabriel Tamborski, Sam, Subspace Studios, Junyu Yang, Pedro Madruga, Vadim, Cory Kujawski, K, Raven Klaugh, Randy H, Mano Prime, Sebastain Graf, Space Cruiser
251
 
252
 
253
  Thank you to all my generous patrons and donaters!
@@ -258,6 +276,11 @@ And thank you again to a16z for their generous grant.
258
 
259
  # Original model card: Upstage's Llama 2 70B Instruct v2
260
 
 
 
 
 
 
261
  # SOLAR-0-70b-16bit model card
262
  The model name has been changed from LLaMa-2-70b-instruct-v2 to SOLAR-0-70b-16bit
263
 
 
1
  ---
2
+ base_model: https://huggingface.co/upstage/Llama-2-70b-instruct-v2
3
  inference: false
4
  language:
5
  - en
6
  license: llama2
7
  model_creator: Upstage
 
8
  model_name: Llama 2 70B Instruct v2
9
  model_type: llama
10
  pipeline_tag: text-generation
11
+ prompt_template: '### System:
12
+
13
+ {system_message}
14
+
15
+
16
+ ### User:
17
+
18
+ {prompt}
19
+
20
+
21
+ ### Assistant:
22
+
23
+ '
24
  quantized_by: TheBloke
25
  tags:
26
  - upstage
 
61
  <!-- repositories-available start -->
62
  ## Repositories available
63
 
64
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/Upstage-Llama-2-70B-instruct-v2-AWQ)
65
  * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/Upstage-Llama-2-70B-instruct-v2-GPTQ)
66
  * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/Upstage-Llama-2-70B-instruct-v2-GGUF)
 
67
  * [Upstage's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/upstage/Llama-2-70b-instruct-v2)
68
  <!-- repositories-available end -->
69
 
 
83
 
84
  <!-- prompt-template end -->
85
 
86
+
87
  <!-- README_GPTQ.md-provided-files start -->
88
  ## Provided files and GPTQ parameters
89
 
 
108
 
109
  | Branch | Bits | GS | Act Order | Damp % | GPTQ Dataset | Seq Len | Size | ExLlama | Desc |
110
  | ------ | ---- | -- | --------- | ------ | ------------ | ------- | ---- | ------- | ---- |
111
+ | [main](https://huggingface.co/TheBloke/Upstage-Llama-2-70B-instruct-v2-GPTQ/tree/main) | 4 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 35.33 GB | Yes | 4-bit, with Act Order. No group size, to lower VRAM requirements. |
112
+ | [gptq-4bit-32g-actorder_True](https://huggingface.co/TheBloke/Upstage-Llama-2-70B-instruct-v2-GPTQ/tree/gptq-4bit-32g-actorder_True) | 4 | 32 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 40.66 GB | Yes | 4-bit, with Act Order and group size 32g. Gives highest possible inference quality, with maximum VRAM usage. |
113
+ | [gptq-4bit-64g-actorder_True](https://huggingface.co/TheBloke/Upstage-Llama-2-70B-instruct-v2-GPTQ/tree/gptq-4bit-64g-actorder_True) | 4 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 37.99 GB | Yes | 4-bit, with Act Order and group size 64g. Uses less VRAM than 32g, but with slightly lower accuracy. |
114
+ | [gptq-4bit-128g-actorder_True](https://huggingface.co/TheBloke/Upstage-Llama-2-70B-instruct-v2-GPTQ/tree/gptq-4bit-128g-actorder_True) | 4 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 36.65 GB | Yes | 4-bit, with Act Order and group size 128g. Uses even less VRAM than 64g, but with slightly lower accuracy. |
115
  | [gptq-3bit--1g-actorder_True](https://huggingface.co/TheBloke/Upstage-Llama-2-70B-instruct-v2-GPTQ/tree/gptq-3bit--1g-actorder_True) | 3 | None | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 26.78 GB | No | 3-bit, with Act Order and no group size. Lowest possible VRAM requirements. May be lower quality than 3-bit 128g. |
116
  | [gptq-3bit-128g-actorder_False](https://huggingface.co/TheBloke/Upstage-Llama-2-70B-instruct-v2-GPTQ/tree/gptq-3bit-128g-actorder_False) | 3 | 128 | No | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 28.03 GB | No | 3-bit, with group size 128g but no act-order. Slightly higher VRAM requirements than 3-bit None. |
117
+ | [gptq-3bit-128g-actorder_True](https://huggingface.co/TheBloke/Upstage-Llama-2-70B-instruct-v2-GPTQ/tree/gptq-3bit-128g-actorder_True) | 3 | 128 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 28.03 GB | No | 3-bit, with group size 128g and act-order. Higher quality than 128g-False. |
118
+ | [gptq-3bit-64g-actorder_True](https://huggingface.co/TheBloke/Upstage-Llama-2-70B-instruct-v2-GPTQ/tree/gptq-3bit-64g-actorder_True) | 3 | 64 | Yes | 0.1 | [wikitext](https://huggingface.co/datasets/wikitext/viewer/wikitext-2-v1/test) | 4096 | 29.30 GB | No | 3-bit, with group size 64g and act-order. |
119
 
120
  <!-- README_GPTQ.md-provided-files end -->
121
 
122
  <!-- README_GPTQ.md-download-from-branches start -->
123
  ## How to download from branches
124
 
125
+ - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/Upstage-Llama-2-70B-instruct-v2-GPTQ:main`
126
  - With Git, you can clone a branch with:
127
  ```
128
+ git clone --single-branch --branch main https://huggingface.co/TheBloke/Upstage-Llama-2-70B-instruct-v2-GPTQ
129
  ```
130
  - In Python Transformers code, the branch is the `revision` parameter; see below.
131
  <!-- README_GPTQ.md-download-from-branches end -->
 
138
 
139
  1. Click the **Model tab**.
140
  2. Under **Download custom model or LoRA**, enter `TheBloke/Upstage-Llama-2-70B-instruct-v2-GPTQ`.
141
+ - To download from a specific branch, enter for example `TheBloke/Upstage-Llama-2-70B-instruct-v2-GPTQ:main`
142
  - see Provided Files above for the list of branches for each option.
143
  3. Click **Download**.
144
  4. The model will start downloading. Once it's finished it will say "Done".
 
186
 
187
  model_name_or_path = "TheBloke/Upstage-Llama-2-70B-instruct-v2-GPTQ"
188
  # To use a different branch, change revision
189
+ # For example: revision="main"
190
  model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
 
191
  device_map="auto",
192
+ trust_remote_code=False,
193
  revision="main")
194
 
195
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
 
208
  print("\n\n*** Generate:")
209
 
210
  input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda()
211
+ output = model.generate(inputs=input_ids, temperature=0.7, do_sample=True, top_p=0.95, top_k=40, max_new_tokens=512)
212
  print(tokenizer.decode(output[0]))
213
 
214
  # Inference can also be done using transformers' pipeline
 
219
  model=model,
220
  tokenizer=tokenizer,
221
  max_new_tokens=512,
222
+ do_sample=True,
223
  temperature=0.7,
224
  top_p=0.95,
225
+ top_k=40,
226
+ repetition_penalty=1.1
227
  )
228
 
229
  print(pipe(prompt_template)[0]['generated_text'])
 
248
 
249
  [TheBloke AI's Discord server](https://discord.gg/theblokeai)
250
 
251
+ ## Thanks, and how to contribute
252
 
253
  Thanks to the [chirper.ai](https://chirper.ai) team!
254
 
255
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
256
+
257
  I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
258
 
259
  If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
 
265
 
266
  **Special thanks to**: Aemon Algiz.
267
 
268
+ **Patreon special mentions**: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov
269
 
270
 
271
  Thank you to all my generous patrons and donaters!
 
276
 
277
  # Original model card: Upstage's Llama 2 70B Instruct v2
278
 
279
+ # Updates
280
+ Solar, a new bot created by Upstage, is now available on **Poe**. As a top-ranked model on the HuggingFace Open LLM leaderboard, and a fine tune of Llama 2, Solar is a great example of the progress enabled by open source.
281
+ Try now at https://poe.com/Solar-0-70b
282
+
283
+
284
  # SOLAR-0-70b-16bit model card
285
  The model name has been changed from LLaMa-2-70b-instruct-v2 to SOLAR-0-70b-16bit
286