TheBloke commited on
Commit
4d9e525
1 Parent(s): 3a52812

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +763 -0
README.md ADDED
@@ -0,0 +1,763 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: jondurbin/bagel-8x7b-v0.2
3
+ datasets:
4
+ - ai2_arc
5
+ - jondurbin/airoboros-3.2
6
+ - codeparrot/apps
7
+ - facebook/belebele
8
+ - boolq
9
+ - jondurbin/cinematika-v0.1
10
+ - drop
11
+ - lmsys/lmsys-chat-1m
12
+ - TIGER-Lab/MathInstruct
13
+ - cais/mmlu
14
+ - Muennighoff/natural-instructions
15
+ - openbookqa
16
+ - piqa
17
+ - Vezora/Tested-22k-Python-Alpaca
18
+ - cakiki/rosetta-code
19
+ - Open-Orca/SlimOrca
20
+ - spider
21
+ - squad_v2
22
+ - migtissera/Synthia-v1.3
23
+ - datasets/winogrande
24
+ - nvidia/HelpSteer
25
+ - Intel/orca_dpo_pairs
26
+ - unalignment/toxic-dpo-v0.1
27
+ - jondurbin/truthy-dpo-v0.1
28
+ - allenai/ultrafeedback_binarized_cleaned
29
+ - Squish42/bluemoon-fandom-1-1-rp-cleaned
30
+ - LDJnr/Capybara
31
+ - JULIELab/EmoBank
32
+ - kingbri/PIPPA-shareGPT
33
+ inference: false
34
+ license: apache-2.0
35
+ model_creator: Jon Durbin
36
+ model_name: Bagel 8X7B v0.2
37
+ model_type: mixtral
38
+ prompt_template: 'Below is an instruction that describes a task. Write a response
39
+ that appropriately completes the request.
40
+
41
+
42
+ ### Instruction:
43
+
44
+ {prompt}
45
+
46
+
47
+ ### Response:
48
+
49
+ '
50
+ quantized_by: TheBloke
51
+ ---
52
+ <!-- markdownlint-disable MD041 -->
53
+
54
+ <!-- header start -->
55
+ <!-- 200823 -->
56
+ <div style="width: auto; margin-left: auto; margin-right: auto">
57
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
58
+ </div>
59
+ <div style="display: flex; justify-content: space-between; width: 100%;">
60
+ <div style="display: flex; flex-direction: column; align-items: flex-start;">
61
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
62
+ </div>
63
+ <div style="display: flex; flex-direction: column; align-items: flex-end;">
64
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
65
+ </div>
66
+ </div>
67
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
68
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
69
+ <!-- header end -->
70
+
71
+ # Bagel 8X7B v0.2 - GGUF
72
+ - Model creator: [Jon Durbin](https://huggingface.co/jondurbin)
73
+ - Original model: [Bagel 8X7B v0.2](https://huggingface.co/jondurbin/bagel-8x7b-v0.2)
74
+
75
+ <!-- description start -->
76
+ ## Description
77
+
78
+ This repo contains GGUF format model files for [Jon Durbin's Bagel 8X7B v0.2](https://huggingface.co/jondurbin/bagel-8x7b-v0.2).
79
+
80
+ <!-- description end -->
81
+ <!-- README_GGUF.md-about-gguf start -->
82
+ ### About GGUF
83
+
84
+ GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
85
+
86
+ Here is an incomplete list of clients and libraries that are known to support GGUF:
87
+
88
+ * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option.
89
+ * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
90
+ * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
91
+ * [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel.
92
+ * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023.
93
+ * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection.
94
+ * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.
95
+ * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
96
+ * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use.
97
+ * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models.
98
+
99
+ <!-- README_GGUF.md-about-gguf end -->
100
+ <!-- repositories-available start -->
101
+ ## Repositories available
102
+
103
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/bagel-8x7b-v0.2-AWQ)
104
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/bagel-8x7b-v0.2-GPTQ)
105
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/bagel-8x7b-v0.2-GGUF)
106
+ * [Jon Durbin's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/jondurbin/bagel-8x7b-v0.2)
107
+ <!-- repositories-available end -->
108
+
109
+ <!-- prompt-template start -->
110
+ ## Prompt template: Alpaca
111
+
112
+ ```
113
+ Below is an instruction that describes a task. Write a response that appropriately completes the request.
114
+
115
+ ### Instruction:
116
+ {prompt}
117
+
118
+ ### Response:
119
+
120
+ ```
121
+
122
+ <!-- prompt-template end -->
123
+
124
+
125
+ <!-- compatibility_gguf start -->
126
+ ## Compatibility
127
+
128
+ These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221)
129
+
130
+ They are also compatible with many third party UIs and libraries - please see the list at the top of this README.
131
+
132
+ ## Explanation of quantisation methods
133
+
134
+ <details>
135
+ <summary>Click to see details</summary>
136
+
137
+ The new methods available are:
138
+
139
+ * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
140
+ * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
141
+ * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
142
+ * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
143
+ * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
144
+
145
+ Refer to the Provided Files table below to see what files use which methods, and how.
146
+ </details>
147
+ <!-- compatibility_gguf end -->
148
+
149
+ <!-- README_GGUF.md-provided-files start -->
150
+ ## Provided files
151
+
152
+ | Name | Quant method | Bits | Size | Max RAM required | Use case |
153
+ | ---- | ---- | ---- | ---- | ---- | ----- |
154
+ | [bagel-8x7b-v0.2.Q2_K.gguf](https://huggingface.co/TheBloke/bagel-8x7b-v0.2-GGUF/blob/main/bagel-8x7b-v0.2.Q2_K.gguf) | Q2_K | 2 | 15.64 GB| 18.14 GB | smallest, significant quality loss - not recommended for most purposes |
155
+ | [bagel-8x7b-v0.2.Q3_K_M.gguf](https://huggingface.co/TheBloke/bagel-8x7b-v0.2-GGUF/blob/main/bagel-8x7b-v0.2.Q3_K_M.gguf) | Q3_K_M | 3 | 20.36 GB| 22.86 GB | very small, high quality loss |
156
+ | [bagel-8x7b-v0.2.Q4_0.gguf](https://huggingface.co/TheBloke/bagel-8x7b-v0.2-GGUF/blob/main/bagel-8x7b-v0.2.Q4_0.gguf) | Q4_0 | 4 | 26.44 GB| 28.94 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
157
+ | [bagel-8x7b-v0.2.Q4_K_M.gguf](https://huggingface.co/TheBloke/bagel-8x7b-v0.2-GGUF/blob/main/bagel-8x7b-v0.2.Q4_K_M.gguf) | Q4_K_M | 4 | 26.44 GB| 28.94 GB | medium, balanced quality - recommended |
158
+ | [bagel-8x7b-v0.2.Q5_0.gguf](https://huggingface.co/TheBloke/bagel-8x7b-v0.2-GGUF/blob/main/bagel-8x7b-v0.2.Q5_0.gguf) | Q5_0 | 5 | 32.23 GB| 34.73 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
159
+ | [bagel-8x7b-v0.2.Q5_K_M.gguf](https://huggingface.co/TheBloke/bagel-8x7b-v0.2-GGUF/blob/main/bagel-8x7b-v0.2.Q5_K_M.gguf) | Q5_K_M | 5 | 32.23 GB| 34.73 GB | large, very low quality loss - recommended |
160
+ | [bagel-8x7b-v0.2.Q6_K.gguf](https://huggingface.co/TheBloke/bagel-8x7b-v0.2-GGUF/blob/main/bagel-8x7b-v0.2.Q6_K.gguf) | Q6_K | 6 | 38.38 GB| 40.88 GB | very large, extremely low quality loss |
161
+ | [bagel-8x7b-v0.2.Q8_0.gguf](https://huggingface.co/TheBloke/bagel-8x7b-v0.2-GGUF/blob/main/bagel-8x7b-v0.2.Q8_0.gguf) | Q8_0 | 8 | 49.63 GB| 52.13 GB | very large, extremely low quality loss - not recommended |
162
+
163
+ **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
164
+
165
+
166
+
167
+ <!-- README_GGUF.md-provided-files end -->
168
+
169
+ <!-- README_GGUF.md-how-to-download start -->
170
+ ## How to download GGUF files
171
+
172
+ **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.
173
+
174
+ The following clients/libraries will automatically download models for you, providing a list of available models to choose from:
175
+
176
+ * LM Studio
177
+ * LoLLMS Web UI
178
+ * Faraday.dev
179
+
180
+ ### In `text-generation-webui`
181
+
182
+ Under Download Model, you can enter the model repo: TheBloke/bagel-8x7b-v0.2-GGUF and below it, a specific filename to download, such as: bagel-8x7b-v0.2.Q4_K_M.gguf.
183
+
184
+ Then click Download.
185
+
186
+ ### On the command line, including multiple files at once
187
+
188
+ I recommend using the `huggingface-hub` Python library:
189
+
190
+ ```shell
191
+ pip3 install huggingface-hub
192
+ ```
193
+
194
+ Then you can download any individual model file to the current directory, at high speed, with a command like this:
195
+
196
+ ```shell
197
+ huggingface-cli download TheBloke/bagel-8x7b-v0.2-GGUF bagel-8x7b-v0.2.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
198
+ ```
199
+
200
+ <details>
201
+ <summary>More advanced huggingface-cli download usage (click to read)</summary>
202
+
203
+ You can also download multiple files at once with a pattern:
204
+
205
+ ```shell
206
+ huggingface-cli download TheBloke/bagel-8x7b-v0.2-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf'
207
+ ```
208
+
209
+ For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
210
+
211
+ To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
212
+
213
+ ```shell
214
+ pip3 install hf_transfer
215
+ ```
216
+
217
+ And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
218
+
219
+ ```shell
220
+ HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/bagel-8x7b-v0.2-GGUF bagel-8x7b-v0.2.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
221
+ ```
222
+
223
+ Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
224
+ </details>
225
+ <!-- README_GGUF.md-how-to-download end -->
226
+
227
+ <!-- README_GGUF.md-how-to-run start -->
228
+ ## Example `llama.cpp` command
229
+
230
+ Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
231
+
232
+ ```shell
233
+ ./main -ngl 35 -m bagel-8x7b-v0.2.Q4_K_M.gguf --color -c 32768 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{prompt}\n\n### Response:"
234
+ ```
235
+
236
+ Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
237
+
238
+ Change `-c 32768` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. Note that longer sequence lengths require much more resources, so you may need to reduce this value.
239
+
240
+ If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
241
+
242
+ For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)
243
+
244
+ ## How to run in `text-generation-webui`
245
+
246
+ Further instructions can be found in the text-generation-webui documentation, here: [text-generation-webui/docs/04 ‐ Model Tab.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/04%20%E2%80%90%20Model%20Tab.md#llamacpp).
247
+
248
+ ## How to run from Python code
249
+
250
+ You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. Note that at the time of writing (Nov 27th 2023), ctransformers has not been updated for some time and is not compatible with some recent models. Therefore I recommend you use llama-cpp-python.
251
+
252
+ ### How to load this model in Python code, using llama-cpp-python
253
+
254
+ For full documentation, please see: [llama-cpp-python docs](https://abetlen.github.io/llama-cpp-python/).
255
+
256
+ #### First install the package
257
+
258
+ Run one of the following commands, according to your system:
259
+
260
+ ```shell
261
+ # Base ctransformers with no GPU acceleration
262
+ pip install llama-cpp-python
263
+ # With NVidia CUDA acceleration
264
+ CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python
265
+ # Or with OpenBLAS acceleration
266
+ CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python
267
+ # Or with CLBLast acceleration
268
+ CMAKE_ARGS="-DLLAMA_CLBLAST=on" pip install llama-cpp-python
269
+ # Or with AMD ROCm GPU acceleration (Linux only)
270
+ CMAKE_ARGS="-DLLAMA_HIPBLAS=on" pip install llama-cpp-python
271
+ # Or with Metal GPU acceleration for macOS systems only
272
+ CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python
273
+
274
+ # In windows, to set the variables CMAKE_ARGS in PowerShell, follow this format; eg for NVidia CUDA:
275
+ $env:CMAKE_ARGS = "-DLLAMA_OPENBLAS=on"
276
+ pip install llama-cpp-python
277
+ ```
278
+
279
+ #### Simple llama-cpp-python example code
280
+
281
+ ```python
282
+ from llama_cpp import Llama
283
+
284
+ # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
285
+ llm = Llama(
286
+ model_path="./bagel-8x7b-v0.2.Q4_K_M.gguf", # Download the model file first
287
+ n_ctx=32768, # The max sequence length to use - note that longer sequence lengths require much more resources
288
+ n_threads=8, # The number of CPU threads to use, tailor to your system and the resulting performance
289
+ n_gpu_layers=35 # The number of layers to offload to GPU, if you have GPU acceleration available
290
+ )
291
+
292
+ # Simple inference example
293
+ output = llm(
294
+ "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{prompt}\n\n### Response:", # Prompt
295
+ max_tokens=512, # Generate up to 512 tokens
296
+ stop=["</s>"], # Example stop token - not necessarily correct for this specific model! Please check before using.
297
+ echo=True # Whether to echo the prompt
298
+ )
299
+
300
+ # Chat Completion API
301
+
302
+ llm = Llama(model_path="./bagel-8x7b-v0.2.Q4_K_M.gguf", chat_format="llama-2") # Set chat_format according to the model you are using
303
+ llm.create_chat_completion(
304
+ messages = [
305
+ {"role": "system", "content": "You are a story writing assistant."},
306
+ {
307
+ "role": "user",
308
+ "content": "Write a story about llamas."
309
+ }
310
+ ]
311
+ )
312
+ ```
313
+
314
+ ## How to use with LangChain
315
+
316
+ Here are guides on using llama-cpp-python and ctransformers with LangChain:
317
+
318
+ * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
319
+ * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers)
320
+
321
+ <!-- README_GGUF.md-how-to-run end -->
322
+
323
+ <!-- footer start -->
324
+ <!-- 200823 -->
325
+ ## Discord
326
+
327
+ For further support, and discussions on these models and AI in general, join us at:
328
+
329
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
330
+
331
+ ## Thanks, and how to contribute
332
+
333
+ Thanks to the [chirper.ai](https://chirper.ai) team!
334
+
335
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
336
+
337
+ I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
338
+
339
+ If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
340
+
341
+ Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
342
+
343
+ * Patreon: https://patreon.com/TheBlokeAI
344
+ * Ko-Fi: https://ko-fi.com/TheBlokeAI
345
+
346
+ **Special thanks to**: Aemon Algiz.
347
+
348
+ **Patreon special mentions**: Michael Levine, 阿明, Trailburnt, Nikolai Manek, John Detwiler, Randy H, Will Dee, Sebastain Graf, NimbleBox.ai, Eugene Pentland, Emad Mostaque, Ai Maven, Jim Angel, Jeff Scroggin, Michael Davis, Manuel Alberto Morcote, Stephen Murray, Robert, Justin Joy, Luke @flexchar, Brandon Frisco, Elijah Stavena, S_X, Dan Guido, Undi ., Komninos Chatzipapas, Shadi, theTransient, Lone Striker, Raven Klaugh, jjj, Cap'n Zoog, Michel-Marie MAUDET (LINAGORA), Matthew Berman, David, Fen Risland, Omer Bin Jawed, Luke Pendergrass, Kalila, OG, Erik Bjäreholt, Rooh Singh, Joseph William Delisle, Dan Lewis, TL, John Villwock, AzureBlack, Brad, Pedro Madruga, Caitlyn Gatomon, K, jinyuan sun, Mano Prime, Alex, Jeffrey Morgan, Alicia Loh, Illia Dulskyi, Chadd, transmissions 11, fincy, Rainer Wilmers, ReadyPlayerEmma, knownsqashed, Mandus, biorpg, Deo Leter, Brandon Phillips, SuperWojo, Sean Connelly, Iucharbius, Jack West, Harry Royden McLaughlin, Nicholas, terasurfer, Vitor Caleffi, Duane Dunston, Johann-Peter Hartmann, David Ziegler, Olakabola, Ken Nordquist, Trenton Dambrowitz, Tom X Nguyen, Vadim, Ajan Kanaga, Leonard Tan, Clay Pascal, Alexandros Triantafyllidis, JM33133, Xule, vamX, ya boyyy, subjectnull, Talal Aujan, Alps Aficionado, wassieverse, Ari Malik, James Bentley, Woland, Spencer Kim, Michael Dempsey, Fred von Graf, Elle, zynix, William Richards, Stanislav Ovsiannikov, Edmond Seymore, Jonathan Leane, Martin Kemka, usrbinkat, Enrico Ros
349
+
350
+
351
+ Thank you to all my generous patrons and donaters!
352
+
353
+ And thank you again to a16z for their generous grant.
354
+
355
+ <!-- footer end -->
356
+
357
+ <!-- original-model-card start -->
358
+ # Original model card: Jon Durbin's Bagel 8X7B v0.2
359
+
360
+
361
+ # A bagel, with everything (except DPO)
362
+
363
+ ![bagel](bagel.png)
364
+
365
+ ## Overview
366
+
367
+ An experimental fine-tune of [mixtral-8x7b-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1) using [bagel](https://github.com/jondurbin/bagel)
368
+
369
+ This is the model after the SFT phase, before DPO has been applied.
370
+
371
+ Hardware kindly provided by [Massed Compute](https://massedcompute.com/?utm_source=huggingface&utm_creative_format=model_card&utm_content=creator_jon)
372
+
373
+ ### Data sources
374
+
375
+ *Yes, you will see benchmark names in the list, but this only uses the train splits, and a decontamination by cosine similarity is performed at the end as a sanity check*
376
+
377
+ - [ai2_arc](https://huggingface.co/datasets/ai2_arc)
378
+ - Abstraction and reasoning dataset, useful in measuring "intelligence" to a certain extent.
379
+ - [airoboros](https://huggingface.co/datasets/unalignment/spicy-3.1)
380
+ - Variety of categories of synthetic instructions generated by gpt-4.
381
+ - [apps](https://huggingface.co/datasets/codeparrot/apps)
382
+ - Python coding dataset with 10k problems.
383
+ - [belebele](https://huggingface.co/datasets/facebook/belebele)
384
+ - Multi-lingual reading comprehension dataset.
385
+ - [bluemoon](https://huggingface.co/datasets/Squish42/bluemoon-fandom-1-1-rp-cleaned)
386
+ - Roleplay data scraped from Bluemoon, then cleaned and formatted as ShareGPT.
387
+ - [boolq](https://huggingface.co/datasets/boolq)
388
+ - Corpus of yes/no questions (which can be surprisingly difficult for AI to answer apparently?)
389
+ - [capybara](https://huggingface.co/datasets/LDJnr/Capybara)
390
+ - Multi-turn dataset used to create the capybara models.
391
+ - [cinematika](https://huggingface.co/datasets/jondurbin/cinematika-v0.1) (instruction and plain text)
392
+ - RP-style data synthesized from movie scripts so the model isn't quite as boring as it otherwise would be.
393
+ - [drop](https://huggingface.co/datasets/drop)
394
+ - More reading comprehension.
395
+ - [emobank](https://github.com/JULIELab/EmoBank)
396
+ - Emotion annotations using the Valence-Arousal-Domninance scheme.
397
+ - [gutenberg](https://www.gutenberg.org/) (plain text)
398
+ - Books/plain text, again to make the model less boring, only a handful of examples supported by [chapterize](https://github.com/JonathanReeve/chapterize)
399
+ - [lmsys_chat_1m](https://huggingface.co/datasets/lmsys/lmsys-chat-1m) (only gpt-4 items, also used for DPO)
400
+ - Chats collected by the lmsys chat arena, containing a wide variety of chats with various models.
401
+ - [mathinstruct](https://huggingface.co/datasets/TIGER-Lab/MathInstruct)
402
+ - Composite dataset with a variety of math-related tasks and problem/question formats.
403
+ - [mmlu](https://huggingface.co/datasets/cais/mmlu)
404
+ - Massive Multitask Language Understanding - a wide variety of questions about various subject matters.
405
+ - [natural_instructions](https://huggingface.co/datasets/Muennighoff/natural-instructions)
406
+ - Millions of instructions from 1600+ task categories (sampled down substantially, stratified by task type)
407
+ - [openbookqa](https://huggingface.co/datasets/openbookqa)
408
+ - Question answering dataset.
409
+ - [pippa](https://huggingface.co/datasets/kingbri/PIPPA-shareGPT)
410
+ - Deduped version of [PIPPA](https://huggingface.co/datasets/PygmalionAI/PIPPA) in ShareGPT format.
411
+ - [piqa](https://huggingface.co/datasets/piqa)
412
+ - Phyiscal interaction question answering.
413
+ - [python_alpaca](https://huggingface.co/datasets/Vezora/Tested-22k-Python-Alpaca)
414
+ - Python instruction response pairs, validated as functional.
415
+ - [rosetta_code](https://huggingface.co/datasets/cakiki/rosetta-code)
416
+ - Code problems and solutions in a variety of programming languages taken from rosettacode.org.
417
+ - [slimorca](https://huggingface.co/datasets/Open-Orca/SlimOrca)
418
+ - Collection of ~500k gpt-4 verified chats from OpenOrca.
419
+ - [spider](https://huggingface.co/datasets/spider)
420
+ - SQL-targeted dataset.
421
+ - [squad_v2](https://huggingface.co/datasets/squad_v2)
422
+ - Contextual question answering (RAG).
423
+ - [synthia](https://huggingface.co/datasets/migtissera/Synthia-v1.3)
424
+ - GPT-4 generated data using advanced prompting from Migel Tissera.
425
+ - [winogrande](https://huggingface.co/datasets/winogrande)
426
+ - Fill in the blank style prompts.
427
+
428
+ Only the train splits were used (if a split was provided), and an additional pass of decontamination is performed using approximate nearest neighbor search (via faiss).
429
+
430
+ ## How to easily download and use this model
431
+ [Massed Compute](https://massedcompute.com/?utm_source=huggingface&utm_creative_format=model_card&utm_content=creator_jon) has created a Virtual Machine (VM) pre-loaded with TGI and Text Generation WebUI.
432
+
433
+ 1) For this model rent the [Jon Durbin 4xA6000](https://shop.massedcompute.com/products/jon-durbin-4x-a6000?utm_source=huggingface&utm_creative_format=model_card&utm_content=creator_jon) Virtual Machine
434
+ 2) After you start your rental you will receive an email with instructions on how to Login to the VM
435
+ 3) Once inside the VM, open the terminal and run `conda activate text-generation-inference`
436
+ 4) Then `cd Desktop/text-generation-inference/`
437
+ 5) Run `volume=$PWD/data`
438
+ 6) Run`model=jondurbin/bagel-8x7b-v0.2`
439
+ 7) `sudo docker run --gpus '"device=0,1,2,3"' --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:1.3 --model-id $model`
440
+ 8) The model will take some time to load...
441
+ 9) Once loaded the model will be available on port 8080
442
+
443
+ Sample command within the VM
444
+ ```
445
+ curl 0.0.0.0:8080/generate \
446
+ -X POST \
447
+ -d '{"inputs":"<|system|>You are a friendly chatbot.\n<|user|>What type of model are you?\n<|assistant|>","parameters":{"do_sample": true, "max_new_tokens": 100, "repetition_penalty": 1.15, "temperature": 0.7, "top_k": 20, "top_p": 0.9, "best_of": 1}}'\
448
+ -H 'Content-Type: application/json'
449
+ ```
450
+
451
+ You can also access the model from outside the VM
452
+ ```
453
+ curl IP_ADDRESS_PROVIDED_BY_MASSED_COMPUTE_VM:8080/generate \
454
+ -X POST \
455
+ -d '{"inputs":"<|system|>You are a friendly chatbot.\n<|user|>What type of model are you?\n<|assistant|>","parameters":{"do_sample": true, "max_new_tokens": 100, "repetition_penalty": 1.15, "temperature": 0.7, "top_k": 20, "top_p": 0.9, "best_of": 1}}'\
456
+ -H 'Content-Type: application/json
457
+ ```
458
+
459
+ For assistance with the VM join the [Massed Compute Discord Server](https://discord.gg/Mj4YMQY3DA)
460
+
461
+ ## Prompt formatting
462
+
463
+ In sticking with the theme of the bagel, I didn't want to use a single prompt format, so I used 4 - vicuna, llama-2, alpaca, and chat-ml (sorta).
464
+ I also didn't want to randomly select a single prompt format for each item (hoping each instruction would generalize more when used in a variety of prompt formats), so each instruction is actually converted into every prompt format.
465
+
466
+ This means each epoch of our fine-tune is really basically 4 epochs. So, for the fine-tunes, I would recommend only doing 1 epoch (or 0.75 epochs). I am testing with a single epoch using a relatively low learning rate.
467
+
468
+ ### Alpaca (sort of)
469
+
470
+ ```
471
+ Below is an instruction that describes a task. Write a response that appropriately completes the request.
472
+
473
+ ### Instruction:
474
+ {system prompt, if provided}
475
+ {instruction}
476
+
477
+ ### Response:
478
+ ```
479
+
480
+ The main difference here is that because of the dataset formatting and variety of data sources, it would have been much to tedious to add an `### Input:` block, so the inputs are just in the instruction section.
481
+
482
+ ### Vicuna
483
+
484
+ ```
485
+ {system prompt, if provided, randomly defaulting to "A chat between a user and an unbiased, uncensored assistant."}
486
+ USER: {instruction}
487
+ ASSISTANT:
488
+ ```
489
+
490
+ ### ChatML (sort of)
491
+
492
+ I don't really understand the point of having special tokens for `<|im_start|>` and `<|im_end|>`, because in practice they just act as BOS and EOS tokens (but, please correct me if I'm wrong).
493
+
494
+ So, instead of:
495
+ ```text
496
+ {bos}<|im_start|>{role}
497
+ {text}
498
+ <|im_end|>{eos}
499
+ ```
500
+
501
+ I just changed it to:
502
+ ```text
503
+ {bos}{role}
504
+ {text}
505
+ {eos}
506
+ ```
507
+
508
+ If you *really* want to use `<|im_start|>` and `<|im_end|>`, just update your `tokenizer_config.json` to use `<|im_start|>` instead of `<s>` and `<|im_end|>` instead of `</s>` and when tokenizing. And if you still don't like what I've done to this chat-ml-ish format, feel free to cry into your pillow or fork the code and do a new fine-tune.
509
+
510
+ ### Llama-2 chat
511
+
512
+ ```
513
+ [INST] <<SYS>>
514
+ {system}
515
+ <</SYS>>
516
+
517
+ {instruction} [/INST]
518
+ ```
519
+
520
+ ### Default via chat template
521
+
522
+ The model's `tokenizer_config.json` includes the default chat template (llama-2), so you can simply use the `apply_chat_template` method to build the full prompt.
523
+
524
+ ```
525
+ import transformers
526
+ tokenizer = transformers.AutoTokenizer.from_pretrained('jondurbin/bagel-8x7b-v0.2')
527
+ chat = [
528
+ {"role": "system", "content": "You are Bob, a friendly AI assistant."},
529
+ {"role": "user", "content": "Hello, how are you?"},
530
+ {"role": "assistant", "content": "I'm doing great. How can I help you today?"},
531
+ {"role": "user", "content": "I'd like to show off how chat templating works!"},
532
+ ]
533
+ print(tokenizer.apply_chat_template(chat, tokenize=False))
534
+ ```
535
+
536
+ ### Contribute
537
+
538
+ If you're interested in new functionality/datasets, take a look at [bagel repo](https://github.com/jondurbin/bagel) and either make a PR or open an issue with details.
539
+
540
+ To help me with the fine-tuning costs (which are extremely expensive for these large combined datasets):
541
+
542
+ - https://bmc.link/jondurbin
543
+ - ETH 0xce914eAFC2fe52FdceE59565Dd92c06f776fcb11
544
+ - BTC bc1qdwuth4vlg8x37ggntlxu5cjfwgmdy5zaa7pswf
545
+
546
+ ### Guide for certain tasks
547
+
548
+ #### RA(G)/contextual question answering
549
+
550
+ The model was trained to ignore what it thinks it knows, and uses the context to answer the questions, when using the format below.
551
+ The model was also tuned to limit the values to the provided context as much as possible to reduce hallucinations.
552
+
553
+ The format for a contextual prompt is as follows:
554
+ ```
555
+ BEGININPUT
556
+ BEGINCONTEXT
557
+ [key0: value0]
558
+ [key1: value1]
559
+ ... other metdata ...
560
+ ENDCONTEXT
561
+ [insert your text blocks here]
562
+ ENDINPUT
563
+ [add as many other blocks, in the exact same format]
564
+ BEGININSTRUCTION
565
+ [insert your instruction(s). The model was tuned with single questions, paragraph format, lists, etc.]
566
+ ENDINSTRUCTION
567
+ ```
568
+
569
+ I know it's a bit verbose and annoying, but after much trial and error, using these explicit delimiters helps the model understand where to find the responses and how to associate specific sources with it.
570
+ - `BEGININPUT` - denotes a new input block
571
+ - `BEGINCONTEXT` - denotes the block of context (metadata key/value pairs) to associate with the current input block
572
+ - `ENDCONTEXT` - denotes the end of the metadata block for the current input
573
+ - [text] - Insert whatever text you want for the input block, as many paragraphs as can fit in the context.
574
+ - `ENDINPUT` - denotes the end of the current input block
575
+ - [repeat as many input blocks in this format as you want]
576
+ - `BEGININSTRUCTION` - denotes the start of the list (or one) instruction(s) to respond to for all of the input blocks above.
577
+ - [instruction(s)]
578
+ - `ENDINSTRUCTION` - denotes the end of instruction set
579
+
580
+ __Use a very low temperature!__
581
+
582
+ Here's a trivial, but important example to prove the point:
583
+ ```
584
+ BEGININPUT
585
+ BEGINCONTEXT
586
+ date: 2021-01-01
587
+ url: https://web.site/123
588
+ ENDCONTEXT
589
+ In a shocking turn of events, blueberries are now green, but will be sticking with the same name.
590
+ ENDINPUT
591
+ BEGININSTRUCTION
592
+ What color are bluberries? Source?
593
+ ENDINSTRUCTION
594
+ ```
595
+
596
+ And the response:
597
+ ```
598
+ Blueberries are now green.
599
+ Source:
600
+ date: 2021-01-01
601
+ url: https://web.site/123
602
+ ```
603
+
604
+ #### Summarization
605
+
606
+ 500 samples have been included from [this dataset](https://huggingface.co/datasets/mattpscott/airoboros-summarization), using the same format as contextual question answering, for example:
607
+
608
+ ```
609
+ BEGININPUT
610
+ {text to summarize}
611
+ ENDINPUT
612
+ BEGININSTRUCTION
613
+ Summarize the input in around 130 words.
614
+ ENDINSTRUCTION
615
+ ```
616
+
617
+ #### Agent/function calling
618
+
619
+ The dataset includes many examples of function/args generation based on input criteria. This is somewhat similar to the OpenAI function calling, but the output is either JSON or YAML.
620
+
621
+ Example prompt:
622
+ ```
623
+ As an AI assistant, please select the most suitable function and parameters from the list of available functions below, based on the user's input. Provide your response in JSON format.
624
+
625
+ Input: I want to know how many times 'Python' is mentioned in my text file.
626
+
627
+ Available functions:
628
+ file_analytics:
629
+ description: This tool performs various operations on a text file.
630
+ params:
631
+ action: The operation we want to perform on the data, such as "count_occurrences", "find_line", etc.
632
+ filters:
633
+ keyword: The word or phrase we want to search for.
634
+ ```
635
+
636
+ Response:
637
+ ```json
638
+ {
639
+ "function": "file_analytics",
640
+ "params": {
641
+ "action": "count_occurrences",
642
+ "filters": {
643
+ "keyword": "Python"
644
+ }
645
+ }
646
+ }
647
+ ```
648
+
649
+ #### reWOO style execution planning
650
+
651
+ The model now supports execution planning for complex instructions that would require making use of several tools. The output is just the plan, you must implement a mechanism to parse the output and actually call the functions!
652
+
653
+ Example prompt:
654
+ ```
655
+ Please construct a systematic plan to generate an optimal response to the user instruction, utilizing a set of provided tools. Each plan will correspond to an evidence value, which will be the output of one of the available functions given an input string
656
+ that could be the user's question, one or more prior evidence values, or a combination of both.
657
+
658
+ Here are the tools available to be called:
659
+ DuckDuckGo[input]: Tool that enables the user to search for information using the DuckDuckGo search engine. This tool is helpful in locating a suitable list of sites that may contain the answer to the user's query. It does not directly answer the question but finds a list of sites that might have the answer.
660
+ TextScraper[input]: Load one or more websites from the input string containing newline delimited links, where input is one or more links, and produces plain text output containing the content of the links.
661
+ HyperlinkExtractor[input]: Extract links from plain text and produces a plain text, newline delimited response of links.
662
+ KnowledgeModel[input]: Question answering language model, particularly useful in answering questions based on an input passage of text. The input must be a text question that references an :evidence[n]: variable, e.g. What color is the cat, given :evidence1:?
663
+
664
+ The output should be in format:
665
+ Plan: [first action to take based on input question]
666
+ :evidence0: = [function to call with input parameter]
667
+ Plan: [next action to take, based on result of :evidence0:]
668
+ :evidence1: = [next function to call and input parameter, which may include reference to previous evidence, e.g. "Given context :evidence0"]
669
+ ...
670
+ Answer: [:evidence[n]: containing the final answer.]
671
+
672
+ Question: Who won the Nobel Prize in Literature in 2020 and what is their most famous work?
673
+ ```
674
+
675
+ Response:
676
+ ```
677
+ Plan: Begin by conducting a web search to find out who won the Nobel Prize in Literature in 2020.
678
+ :evidence0: = DuckDuckGo[Nobel Prize in Literature 2020 winner]
679
+ Plan: Utilize the KnowledgeModel to interpret the search results and find the name of the laureate.
680
+ :evidence1: = KnowledgeModel[Who won the Nobel Prize in Literature in 2020, given :evidence0:?]
681
+ Plan: Conduct another web search to find the most famous work of the identified laureate.
682
+ :evidence2: = DuckDuckGo[Most famous work of :evidence1:]
683
+ Plan: Extract the relevant links from the DuckDuckGo search results for a more focused search.
684
+ :evidence3: = HyperlinkExtractor[:evidence2:]
685
+ Plan: Use the TextScraper tool to extract information from the relevant links.
686
+ :evidence4: = TextScraper[:evidence3:]
687
+ Plan: Finally, utilize the KnowledgeModel to identify and summarize the most famous work of the laureate from the extracted information.
688
+ :evidence5: = KnowledgeModel[What is the most famous work of :evidence1:, given :evidence4:?]
689
+ Answer: :evidence5:
690
+ ```
691
+
692
+ For this to be useful, you'd have to parse the output plan text, and implement/call each of the functions. This is just pseudo-code, completely untested off the top of my head, and obviously would requiring full implementation + hardening:
693
+
694
+ ```python
695
+ import re
696
+ import requests
697
+
698
+ def inject_context(input_text, **context):
699
+ for ref in set(re.findall(r"(:evidence[0-9]+:)", input_text, re.I)):
700
+ input_text = input_text.replace(ref, context.get(ref, ""))
701
+ return input_text
702
+
703
+ def duckduckgo(input_text, **context):
704
+ search_string = inject_context(input_text, **context)
705
+ ... search via duck duck go using search_string
706
+ ... return text content
707
+
708
+ def link_extractor(input_text, **context):
709
+ input_text = inject_context(input_text, **context)
710
+ return "\n".join(list(set(re.findall(r"(https?://[^\s]+?\.?)", input_text, re.I))))
711
+
712
+ def scrape(input_text, **context):
713
+ input_text = inject_context(input_text, **context)
714
+ text = []
715
+ for link in input_text.splitlines():
716
+ text.append(requests.get(link).text)
717
+ return "\n".join(text)
718
+
719
+ def infer(input_text, **context)
720
+ prompt = inject_context(input_text, **context)
721
+ ... call model with prompt, return output
722
+
723
+ def parse_plan(plan):
724
+ method_map = {
725
+ "DuckDuckGo": duckduckgo,
726
+ "HyperlinkExtractor": link_extractor,
727
+ "KnowledgeModel": infer,
728
+ "TextScraper": scrape,
729
+ }
730
+ context = {}
731
+ for line in plan.strip().splitlines():
732
+ if line.startswith("Plan:"):
733
+ print(line)
734
+ continue
735
+ parts = re.match("^(:evidence[0-9]+:)\s*=\s*([^\[]+])(\[.*\])\s$", line, re.I)
736
+ if not parts:
737
+ if line.startswith("Answer: "):
738
+ return context.get(line.split(" ")[-1].strip(), "Answer couldn't be generated...")
739
+ raise RuntimeError("bad format: " + line)
740
+ context[parts.group(1)] = method_map[parts.group(2)](parts.group(3), **context)
741
+ ```
742
+
743
+ ### Fine-tuning information
744
+
745
+ You can find charts, and the full configuration used to fine-tune this model on [weights and biases](https://wandb.ai/jondurbin/bagel-8x7b-v0.2/runs/agxjjdso?workspace=user-jondurbin)
746
+
747
+ The model was fine-tuned on an 8x a6000 instance, for 4 days, 15 hours, 6 minutes and 42 seconds.
748
+
749
+ ### Licence and usage restrictions
750
+
751
+ The base model is mixtral-8x7b-v0.1, which is licensed as apache-2.0 - no issues there.
752
+
753
+ The fine-tuning data, however, includes several datasets that have data generated at least in part by OpenAI's gpt-4.
754
+
755
+ I am not a lawyer, so I can't help determine if this is actually commercially viable, but some questions that often come up are:
756
+
757
+ - Does the OpenAI ToS apply only to the user who created the dataset initially, and not subsequent models?
758
+ - If the dataset was released under a permissive license, but actually includes OpenAI generated data, does that ToS supersede the license?
759
+ - Does the dataset fall completely under fair use anyways, since the model isn't really capable of reproducing the entire training set verbatim?
760
+
761
+ Use your best judgement and seek legal advice if you are concerned about the terms. In any case, by using this model, you agree to completely indemnify me.
762
+
763
+ <!-- original-model-card end -->