TheBloke commited on
Commit
a29e7b5
·
1 Parent(s): 8eb2352

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -13
README.md CHANGED
@@ -5,7 +5,7 @@ datasets:
5
  inference: false
6
  language:
7
  - en
8
- license: apache-2.0
9
  model_creator: Eric Hartford
10
  model_name: Based 30B
11
  model_type: llama
@@ -86,15 +86,8 @@ ASSISTANT:
86
  ```
87
 
88
  <!-- prompt-template end -->
89
- <!-- licensing start -->
90
- ## Licensing
91
 
92
- The creator of the source model has listed its license as `apache-2.0`, and this quantization has therefore used that same license.
93
 
94
- As this model is based on Llama 2, it is also subject to the Meta Llama 2 license terms, and the license files for that are additionally included. It should therefore be considered as being claimed to be licensed under both licenses. I contacted Hugging Face for clarification on dual licensing but they do not yet have an official position. Should this change, or should Meta provide any feedback on this situation, I will update this section accordingly.
95
-
96
- In the meantime, any questions regarding licensing, and in particular how these two licenses might interact, should be directed to the original model repository: [Eric Hartford's Based 30B](https://huggingface.co/ehartford/based-30b).
97
- <!-- licensing end -->
98
  <!-- compatibility_gguf start -->
99
  ## Compatibility
100
 
@@ -153,7 +146,7 @@ The following clients/libraries will automatically download models for you, prov
153
 
154
  ### In `text-generation-webui`
155
 
156
- Under Download Model, you can enter the model repo: TheBloke/based-30B-GGUF and below it, a specific filename to download, such as: based-30b.q4_K_M.gguf.
157
 
158
  Then click Download.
159
 
@@ -168,7 +161,7 @@ pip3 install huggingface-hub>=0.17.1
168
  Then you can download any individual model file to the current directory, at high speed, with a command like this:
169
 
170
  ```shell
171
- huggingface-cli download TheBloke/based-30B-GGUF based-30b.q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
172
  ```
173
 
174
  <details>
@@ -191,7 +184,7 @@ pip3 install hf_transfer
191
  And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
192
 
193
  ```shell
194
- HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/based-30B-GGUF based-30b.q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
195
  ```
196
 
197
  Windows CLI users: Use `set HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1` before running the download command.
@@ -204,7 +197,7 @@ Windows CLI users: Use `set HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1` before running
204
  Make sure you are using `llama.cpp` from commit [d0cee0d36d5be95a0d9088b674dbb27354107221](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
205
 
206
  ```shell
207
- ./main -ngl 32 -m based-30b.q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "You are an an AI who shares your opinions, thoughts, and feelings.\n\nUSER: {prompt}\nASSISTANT:"
208
  ```
209
 
210
  Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
@@ -244,7 +237,7 @@ CT_METAL=1 pip install ctransformers>=0.2.24 --no-binary ctransformers
244
  from ctransformers import AutoModelForCausalLM
245
 
246
  # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
247
- llm = AutoModelForCausalLM.from_pretrained("TheBloke/based-30B-GGUF", model_file="based-30b.q4_K_M.gguf", model_type="llama", gpu_layers=50)
248
 
249
  print(llm("AI is going to"))
250
  ```
 
5
  inference: false
6
  language:
7
  - en
8
+ license: other
9
  model_creator: Eric Hartford
10
  model_name: Based 30B
11
  model_type: llama
 
86
  ```
87
 
88
  <!-- prompt-template end -->
 
 
89
 
 
90
 
 
 
 
 
91
  <!-- compatibility_gguf start -->
92
  ## Compatibility
93
 
 
146
 
147
  ### In `text-generation-webui`
148
 
149
+ Under Download Model, you can enter the model repo: TheBloke/based-30B-GGUF and below it, a specific filename to download, such as: based-30b.Q4_K_M.gguf.
150
 
151
  Then click Download.
152
 
 
161
  Then you can download any individual model file to the current directory, at high speed, with a command like this:
162
 
163
  ```shell
164
+ huggingface-cli download TheBloke/based-30B-GGUF based-30b.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
165
  ```
166
 
167
  <details>
 
184
  And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
185
 
186
  ```shell
187
+ HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/based-30B-GGUF based-30b.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
188
  ```
189
 
190
  Windows CLI users: Use `set HUGGINGFACE_HUB_ENABLE_HF_TRANSFER=1` before running the download command.
 
197
  Make sure you are using `llama.cpp` from commit [d0cee0d36d5be95a0d9088b674dbb27354107221](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
198
 
199
  ```shell
200
+ ./main -ngl 32 -m based-30b.Q4_K_M.gguf --color -c 4096 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "You are an an AI who shares your opinions, thoughts, and feelings.\n\nUSER: {prompt}\nASSISTANT:"
201
  ```
202
 
203
  Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
 
237
  from ctransformers import AutoModelForCausalLM
238
 
239
  # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
240
+ llm = AutoModelForCausalLM.from_pretrained("TheBloke/based-30B-GGUF", model_file="based-30b.Q4_K_M.gguf", model_type="llama", gpu_layers=50)
241
 
242
  print(llm("AI is going to"))
243
  ```