TheBloke commited on
Commit
451c2d2
1 Parent(s): 35ec34a

Upload new k-quant GGML quantised models.

Browse files
Files changed (1) hide show
  1. README.md +127 -25
README.md CHANGED
@@ -1,7 +1,8 @@
1
  ---
2
- license: other
3
  inference: false
 
4
  ---
 
5
  <!-- header start -->
6
  <div style="width: 100%;">
7
  <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
@@ -16,46 +17,82 @@ inference: false
16
  </div>
17
  <!-- header end -->
18
 
19
- # gpt4-x-vicuna-13B-GGML
20
 
21
- These files are GGML format model files of [NousResearch's gpt4-x-vicuna-13b](https://huggingface.co/NousResearch/gpt4-x-vicuna-13b).
22
 
23
- GGML files are for CPU inference using [llama.cpp](https://github.com/ggerganov/llama.cpp).
 
 
 
 
 
24
 
25
  ## Repositories available
26
 
27
- * [4bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/gpt4-x-vicuna-13B-GPTQ).
28
- * [4bit and 5bit GGML models for CPU inference](https://huggingface.co/TheBloke/gpt4-x-vicuna-13B-GGML).
29
- * [float16 HF model for unquantised and 8bit GPU inference](https://huggingface.co/TheBloke/gpt4-x-vicuna-13B-HF).
 
 
 
 
 
 
 
 
 
30
 
31
- ## THE FILES IN MAIN BRANCH REQUIRES LATEST LLAMA.CPP (May 19th 2023 - commit 2d5db48)!
32
 
33
- llama.cpp recently made another breaking change to its quantisation methods - https://github.com/ggerganov/llama.cpp/pull/1508
34
 
35
- I have quantised the GGML files in this repo with the latest version. Therefore you will require llama.cpp compiled on May 19th or later (commit `2d5db48` or later) to use them.
36
 
37
- For files compatible with the previous version of llama.cpp, please see branch `previous_llama_ggmlv2`.
 
 
 
 
 
 
 
 
 
 
 
38
 
39
  ## Provided files
40
- | Name | Quant method | Bits | Size | RAM required | Use case |
41
  | ---- | ---- | ---- | ---- | ---- | ----- |
42
- `gpt4-x-vicuna-13B.ggmlv3.q4_0.bin` | q4_0 | 4bit | 8.14GB | 10GB | 4-bit. |
43
- `gpt4-x-vicuna-13B.ggmlv3.q4_1.bin` | q4_1 | 4bit | 8.95GB | 10GB | 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models.|
44
- `gpt4-x-vicuna-13B.ggmlv3.q5_0.bin` | q5_0 | 5bit | 8.95GB | 11GB | 5-bit. Higher accuracy, higher resource usage and slower inference. |
45
- `gpt4-x-vicuna-13B.ggmlv3.q5_1.bin` | q5_1 | 5bit | 9.76GB | 12GB | 5-bit. Even higher accuracy, higher resource usage and slower inference. |
46
- `gpt4-x-vicuna-13B.ggmlv3.q8_0.bin` | q8_0 | 8bit | 16GB | 18GB | 8-bit. Almost indistinguishable from float16. Huge resource use and slow. Not recommended for normal use.|
 
 
 
 
 
 
 
 
 
 
 
 
47
 
48
  ## How to run in `llama.cpp`
49
 
50
  I use the following command line; adjust for your tastes and needs:
51
 
52
  ```
53
- ./main -t 12 -m gpt4-x-vicuna-13B.ggmlv3.q4_2.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "Below is an instruction that describes a task. Write a response that appropriately completes the request.
54
- ### Instruction:
55
- Write a story about llamas
56
- ### Response:"
57
  ```
58
- Change `-t 12` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`.
 
 
59
 
60
  If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
61
 
@@ -83,15 +120,19 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
83
  * Patreon: https://patreon.com/TheBlokeAI
84
  * Ko-Fi: https://ko-fi.com/TheBlokeAI
85
 
86
- **Patreon special mentions**: Aemon Algiz, Dmitriy Samsonov, Nathan LeClaire, Trenton Dambrowitz, Mano Prime, David Flickinger, vamX, Nikolai Manek, senxiiz, Khalefa Al-Ahmad, Illia Dulskyi, Jonathan Leane, Talal Aujan, V. Lukas, Joseph William Delisle, Pyrater, Oscar Rangel, Lone Striker, Luke Pendergrass, Eugene Pentland, Sebastain Graf, Johann-Peter Hartman.
 
 
87
 
88
  Thank you to all my generous patrons and donaters!
 
89
  <!-- footer end -->
90
- # Original model card
 
91
 
92
  As a base model used https://huggingface.co/eachadea/vicuna-13b-1.1
93
 
94
- Finetuned on Teknium's GPTeacher dataset, unreleased Roleplay v2 dataset, GPT-4-LLM dataset, and Nous Research Instruct Dataset
95
 
96
  Approx 180k instructions, all from GPT-4, all cleaned of any OpenAI censorship/"As an AI Language Model" etc.
97
 
@@ -101,10 +142,71 @@ Trained on 8 A100-80GB GPUs for 5 epochs following Alpaca deepspeed training cod
101
 
102
  Nous Research Instruct Dataset will be released soon.
103
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
104
  GPTeacher, Roleplay v2 by https://huggingface.co/teknium
105
 
106
  Wizard LM by https://github.com/nlpxucan
107
 
108
  Nous Research Instruct Dataset by https://huggingface.co/karan4d and https://huggingface.co/huemin
109
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
110
  Compute provided by our project sponsor https://redmond.ai/
 
1
  ---
 
2
  inference: false
3
+ license: other
4
  ---
5
+
6
  <!-- header start -->
7
  <div style="width: 100%;">
8
  <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
 
17
  </div>
18
  <!-- header end -->
19
 
20
+ # NousResearch's GPT4-x-Vicuna-13B GGML
21
 
22
+ These files are GGML format model files for [NousResearch's GPT4-x-Vicuna-13B](https://huggingface.co/NousResearch/gpt4-x-vicuna-13b).
23
 
24
+ GGML files are for CPU + GPU inference using [llama.cpp](https://github.com/ggerganov/llama.cpp) and libraries and UIs which support this format, such as:
25
+ * [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
26
+ * [KoboldCpp](https://github.com/LostRuins/koboldcpp)
27
+ * [ParisNeo/GPT4All-UI](https://github.com/ParisNeo/gpt4all-ui)
28
+ * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python)
29
+ * [ctransformers](https://github.com/marella/ctransformers)
30
 
31
  ## Repositories available
32
 
33
+ * [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/gpt4-x-vicuna-13B-GPTQ)
34
+ * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/gpt4-x-vicuna-13B-GGML)
35
+ * [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/TheBloke/gpt4-x-vicuna-13B-HF)
36
+
37
+ <!-- compatibility_ggml start -->
38
+ ## Compatibility
39
+
40
+ ### Original llama.cpp quant methods: `q4_0, q4_1, q5_0, q5_1, q8_0`
41
+
42
+ I have quantized these 'original' quantisation methods using an older version of llama.cpp so that they remain compatible with llama.cpp as of May 19th, commit `2d5db48`.
43
+
44
+ These are guaranteed to be compatbile with any UIs, tools and libraries released since late May.
45
 
46
+ ### New k-quant methods: `q2_K, q3_K_S, q3_K_M, q3_K_L, q4_K_S, q4_K_M, q5_K_S, q6_K`
47
 
48
+ These new quantisation methods are compatible with llama.cpp as of June 6th, commit `2d43387`.
49
 
50
+ They are now also compatible with recent releases of text-generation-webui, KoboldCpp, llama-cpp-python and ctransformers. Other tools and libraries may or may not be compatible - check their documentation if in doubt.
51
 
52
+ ## Explanation of the new k-quant methods
53
+
54
+ The new methods available are:
55
+ * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
56
+ * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
57
+ * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
58
+ * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
59
+ * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
60
+ * GGML_TYPE_Q8_K - "type-0" 8-bit quantization. Only used for quantizing intermediate results. The difference to the existing Q8_0 is that the block size is 256. All 2-6 bit dot products are implemented for this quantization type.
61
+
62
+ Refer to the Provided Files table below to see what files use which methods, and how.
63
+ <!-- compatibility_ggml end -->
64
 
65
  ## Provided files
66
+ | Name | Quant method | Bits | Size | Max RAM required | Use case |
67
  | ---- | ---- | ---- | ---- | ---- | ----- |
68
+ | gpt4-x-vicuna-13B.ggmlv3.q2_K.bin | q2_K | 2 | 5.51 GB | 8.01 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. |
69
+ | gpt4-x-vicuna-13B.ggmlv3.q3_K_L.bin | q3_K_L | 3 | 6.93 GB | 9.43 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
70
+ | gpt4-x-vicuna-13B.ggmlv3.q3_K_M.bin | q3_K_M | 3 | 6.31 GB | 8.81 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
71
+ | gpt4-x-vicuna-13B.ggmlv3.q3_K_S.bin | q3_K_S | 3 | 5.66 GB | 8.16 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors |
72
+ | gpt4-x-vicuna-13B.ggmlv3.q4_0.bin | q4_0 | 4 | 7.32 GB | 9.82 GB | Original llama.cpp quant method, 4-bit. |
73
+ | gpt4-x-vicuna-13B.ggmlv3.q4_1.bin | q4_1 | 4 | 8.14 GB | 10.64 GB | Original llama.cpp quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. |
74
+ | gpt4-x-vicuna-13B.ggmlv3.q4_K_M.bin | q4_K_M | 4 | 7.87 GB | 10.37 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K |
75
+ | gpt4-x-vicuna-13B.ggmlv3.q4_K_S.bin | q4_K_S | 4 | 7.37 GB | 9.87 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors |
76
+ | gpt4-x-vicuna-13B.ggmlv3.q5_0.bin | q5_0 | 5 | 8.95 GB | 11.45 GB | Original llama.cpp quant method, 5-bit. Higher accuracy, higher resource usage and slower inference. |
77
+ | gpt4-x-vicuna-13B.ggmlv3.q5_1.bin | q5_1 | 5 | 9.76 GB | 12.26 GB | Original llama.cpp quant method, 5-bit. Even higher accuracy, resource usage and slower inference. |
78
+ | gpt4-x-vicuna-13B.ggmlv3.q5_K_M.bin | q5_K_M | 5 | 9.23 GB | 11.73 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K |
79
+ | gpt4-x-vicuna-13B.ggmlv3.q5_K_S.bin | q5_K_S | 5 | 8.97 GB | 11.47 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors |
80
+ | gpt4-x-vicuna-13B.ggmlv3.q6_K.bin | q6_K | 6 | 10.68 GB | 13.18 GB | New k-quant method. Uses GGML_TYPE_Q8_K - 6-bit quantization - for all tensors |
81
+ | gpt4-x-vicuna-13B.ggmlv3.q8_0.bin | q8_0 | 8 | 13.83 GB | 16.33 GB | Original llama.cpp quant method, 8-bit. Almost indistinguishable from float16. High resource use and slow. Not recommended for most users. |
82
+
83
+
84
+ **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
85
 
86
  ## How to run in `llama.cpp`
87
 
88
  I use the following command line; adjust for your tastes and needs:
89
 
90
  ```
91
+ ./main -t 10 -ngl 32 -m gpt4-x-vicuna-13B.ggmlv3.q5_0.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### Instruction: Write a story about llamas\n### Response:"
 
 
 
92
  ```
93
+ Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`.
94
+
95
+ Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
96
 
97
  If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
98
 
 
120
  * Patreon: https://patreon.com/TheBlokeAI
121
  * Ko-Fi: https://ko-fi.com/TheBlokeAI
122
 
123
+ **Special thanks to**: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov.
124
+
125
+ **Patreon special mentions**: vamX, K, Jonathan Leane, Lone Striker, Sean Connelly, Chris McCloskey, WelcomeToTheClub, Nikolai Manek, John Detwiler, Kalila, David Flickinger, Fen Risland, subjectnull, Johann-Peter Hartmann, Talal Aujan, John Villwock, senxiiz, Khalefa Al-Ahmad, Kevin Schuppel, Alps Aficionado, Derek Yates, Mano Prime, Nathan LeClaire, biorpg, trip7s trip, Asp the Wyvern, chris gileta, Iucharbius , Artur Olbinski, Ai Maven, Joseph William Delisle, Luke Pendergrass, Illia Dulskyi, Eugene Pentland, Ajan Kanaga, Willem Michiel, Space Cruiser, Pyrater, Preetika Verma, Junyu Yang, Oscar Rangel, Spiking Neurons AB, Pierre Kircher, webtim, Cory Kujawski, terasurfer , Trenton Dambrowitz, Gabriel Puliatti, Imad Khwaja, Luke.
126
 
127
  Thank you to all my generous patrons and donaters!
128
+
129
  <!-- footer end -->
130
+
131
+ # Original model card: NousResearch's GPT4-x-Vicuna-13B
132
 
133
  As a base model used https://huggingface.co/eachadea/vicuna-13b-1.1
134
 
135
+ Finetuned on Teknium's GPTeacher dataset, unreleased Roleplay v2 dataset, GPT-4-LLM dataset Uncensored, WizardLM Uncensored and Nous Research Instruct Dataset
136
 
137
  Approx 180k instructions, all from GPT-4, all cleaned of any OpenAI censorship/"As an AI Language Model" etc.
138
 
 
142
 
143
  Nous Research Instruct Dataset will be released soon.
144
 
145
+ Prompt format is Alpaca:
146
+ ```
147
+ ### Instruction:
148
+
149
+ ### Response:
150
+ ```
151
+
152
+ or
153
+
154
+ ```
155
+ ### Instruction:
156
+
157
+ ### Input:
158
+
159
+ ### Response:
160
+
161
+ ```
162
+
163
  GPTeacher, Roleplay v2 by https://huggingface.co/teknium
164
 
165
  Wizard LM by https://github.com/nlpxucan
166
 
167
  Nous Research Instruct Dataset by https://huggingface.co/karan4d and https://huggingface.co/huemin
168
 
169
+ Benchmark results:
170
+
171
+ ```
172
+ "arc_challenge": {
173
+ "acc": 0.4189419795221843,
174
+ "acc_stderr": 0.01441810695363901,
175
+ "acc_norm": 0.439419795221843,
176
+ "acc_norm_stderr": 0.014503747823580123
177
+ },
178
+ "arc_easy": {
179
+ "acc": 0.7159090909090909,
180
+ "acc_stderr": 0.009253921261885768,
181
+ "acc_norm": 0.5867003367003367,
182
+ "acc_norm_stderr": 0.010104361780747527
183
+ },
184
+ "boolq": {
185
+ "acc": 0.8137614678899082,
186
+ "acc_stderr": 0.006808882985424063
187
+ },
188
+ "hellaswag": {
189
+ "acc": 0.5790679147580163,
190
+ "acc_stderr": 0.004926996830194234,
191
+ "acc_norm": 0.7518422624975104,
192
+ "acc_norm_stderr": 0.004310610616845708
193
+ },
194
+ "openbookqa": {
195
+ "acc": 0.288,
196
+ "acc_stderr": 0.02027150383507522,
197
+ "acc_norm": 0.436,
198
+ "acc_norm_stderr": 0.0221989546414768
199
+ },
200
+ "piqa": {
201
+ "acc": 0.7529923830250272,
202
+ "acc_stderr": 0.010062268140772622,
203
+ "acc_norm": 0.749727965179543,
204
+ "acc_norm_stderr": 0.01010656188008979
205
+ },
206
+ "winogrande": {
207
+ "acc": 0.6495659037095501,
208
+ "acc_stderr": 0.01340904767667019
209
+ }
210
+ ```
211
+
212
  Compute provided by our project sponsor https://redmond.ai/