Text Generation
Transformers
Safetensors
English
llama
text-generation-inference
4-bit precision
gptq
TheBloke commited on
Commit
7d6a131
1 Parent(s): 1f741c0

Upload new GPTQs with varied parameters

Browse files
Files changed (1) hide show
  1. README.md +65 -37
README.md CHANGED
@@ -1,20 +1,22 @@
1
  ---
2
- license: other
3
- inference: false
4
  datasets:
5
  - databricks/databricks-dolly-15k
6
  - OpenAssistant/oasst1
7
  - sahil2801/CodeAlpaca-20k
 
8
  language:
9
  - en
 
 
10
  ---
 
11
  <!-- header start -->
12
  <div style="width: 100%;">
13
  <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
14
  </div>
15
  <div style="display: flex; justify-content: space-between; width: 100%;">
16
  <div style="display: flex; flex-direction: column; align-items: flex-start;">
17
- <p><a href="https://discord.gg/Jq4vkcDakD">Chat & support: my new Discord server</a></p>
18
  </div>
19
  <div style="display: flex; flex-direction: column; align-items: flex-end;">
20
  <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
@@ -24,41 +26,62 @@ language:
24
 
25
  # Allen AI's Tulu 30B GPTQ
26
 
27
- These files are GPTQ 4bit model files for [Allen AI's Tulu 30B](https://huggingface.co/allenai/tulu-30b).
 
 
28
 
29
- It is the result of quantising to 4bit using [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ).
30
 
31
  ## Repositories available
32
 
33
- * [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/tulu-30B-GPTQ)
34
  * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/tulu-30B-GGML)
35
  * [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/TheBloke/tulu-30B-fp16)
36
 
37
- ## Prompt template
38
-
39
- The following template should be used:
40
 
41
  ```
42
  <|user|>
43
- prompt goes here
44
  <|assistant|>
45
-
46
  ```
47
 
48
- **Note**: There should be a newline after `<|assistant|>`. This appears to be very important for getting this model to respond correctly.
 
 
 
 
49
 
50
- In other words, the prompt is:
 
 
 
 
 
 
 
 
 
51
 
 
 
 
 
52
  ```
53
- <|user|>\nprompt goes here\n<|assistant|>\n
54
  ```
55
-
56
- ## How to easily download and use this model in text-generation-webui
 
 
 
57
 
58
- Please make sure you're using the latest version of text-generation-webui
59
 
60
  1. Click the **Model tab**.
61
  2. Under **Download custom model or LoRA**, enter `TheBloke/tulu-30B-GPTQ`.
 
 
62
  3. Click **Download**.
63
  4. The model will start downloading. Once it's finished it will say "Done"
64
  5. In the top left, click the refresh icon next to **Model**.
@@ -72,14 +95,13 @@ Please make sure you're using the latest version of text-generation-webui
72
 
73
  First make sure you have [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) installed:
74
 
75
- `pip install auto-gptq`
76
 
77
  Then try the following example code:
78
 
79
  ```python
80
  from transformers import AutoTokenizer, pipeline, logging
81
  from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
82
- import argparse
83
 
84
  model_name_or_path = "TheBloke/tulu-30B-GPTQ"
85
  model_basename = "gptq_model-4bit--1g"
@@ -89,16 +111,30 @@ use_triton = False
89
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
90
 
91
  model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
92
- model_basename=model_basename,
93
  use_safetensors=True,
94
  trust_remote_code=False,
95
  device="cuda:0",
96
  use_triton=use_triton,
97
  quantize_config=None)
98
 
 
 
 
 
 
 
 
 
 
 
 
 
99
  prompt = "Tell me about AI"
100
- prompt_template=f'''### Human: {prompt}
101
- ### Assistant:'''
 
 
102
 
103
  print("\n\n*** Generate:")
104
 
@@ -125,26 +161,18 @@ pipe = pipeline(
125
  print(pipe(prompt_template)[0]['generated_text'])
126
  ```
127
 
128
- ## Provided files
129
-
130
- **gptq_model-4bit--1g.safetensors**
131
-
132
- This will work with AutoGPTQ and CUDA versions of GPTQ-for-LLaMa. There are reports of issues with Triton mode of recent GPTQ-for-LLaMa. If you have issues, please use AutoGPTQ instead.
133
 
134
- It was created without group_size to lower VRAM requirements, and with --act-order (desc_act) to boost inference accuracy as much as possible.
135
 
136
- * `gptq_model-4bit--1g.safetensors`
137
- * Works with AutoGPTQ in CUDA or Triton modes.
138
- * Works with GPTQ-for-LLaMa in CUDA mode. May have issues with GPTQ-for-LLaMa Triton mode.
139
- * Works with text-generation-webui, including one-click-installers.
140
- * Parameters: Groupsize = -1. Act Order / desc_act = True.
141
 
142
  <!-- footer start -->
143
  ## Discord
144
 
145
  For further support, and discussions on these models and AI in general, join us at:
146
 
147
- [TheBloke AI's Discord server](https://discord.gg/Jq4vkcDakD)
148
 
149
  ## Thanks, and how to contribute.
150
 
@@ -159,9 +187,9 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
159
  * Patreon: https://patreon.com/TheBlokeAI
160
  * Ko-Fi: https://ko-fi.com/TheBlokeAI
161
 
162
- **Special thanks to**: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov.
163
 
164
- **Patreon special mentions**: Oscar Rangel, Eugene Pentland, Talal Aujan, Cory Kujawski, Luke, Asp the Wyvern, Ai Maven, Pyrater, Alps Aficionado, senxiiz, Willem Michiel, Junyu Yang, trip7s trip, Sebastain Graf, Joseph William Delisle, Lone Striker, Jonathan Leane, Johann-Peter Hartmann, David Flickinger, Spiking Neurons AB, Kevin Schuppel, Mano Prime, Dmitriy Samsonov, Sean Connelly, Nathan LeClaire, Alain Rossmann, Fen Risland, Derek Yates, Luke Pendergrass, Nikolai Manek, Khalefa Al-Ahmad, Artur Olbinski, John Detwiler, Ajan Kanaga, Imad Khwaja, Trenton Dambrowitz, Kalila, vamX, webtim, Illia Dulskyi.
165
 
166
  Thank you to all my generous patrons and donaters!
167
 
@@ -204,7 +232,7 @@ Your message here!
204
  <|assistant|>
205
  ```
206
 
207
- For best results, format all inputs in this manner.
208
 
209
  ## Performance
210
 
 
1
  ---
 
 
2
  datasets:
3
  - databricks/databricks-dolly-15k
4
  - OpenAssistant/oasst1
5
  - sahil2801/CodeAlpaca-20k
6
+ inference: false
7
  language:
8
  - en
9
+ license: other
10
+ model_type: llama
11
  ---
12
+
13
  <!-- header start -->
14
  <div style="width: 100%;">
15
  <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
16
  </div>
17
  <div style="display: flex; justify-content: space-between; width: 100%;">
18
  <div style="display: flex; flex-direction: column; align-items: flex-start;">
19
+ <p><a href="https://discord.gg/theblokeai">Chat & support: my new Discord server</a></p>
20
  </div>
21
  <div style="display: flex; flex-direction: column; align-items: flex-end;">
22
  <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
 
26
 
27
  # Allen AI's Tulu 30B GPTQ
28
 
29
+ These files are GPTQ model files for [Allen AI's Tulu 30B](https://huggingface.co/allenai/tulu-30b).
30
+
31
+ Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them.
32
 
33
+ These models were quantised using hardware kindly provided by [Latitude.sh](https://www.latitude.sh/accelerate).
34
 
35
  ## Repositories available
36
 
37
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/tulu-30B-GPTQ)
38
  * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/tulu-30B-GGML)
39
  * [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/TheBloke/tulu-30B-fp16)
40
 
41
+ ## Prompt template: Tulu
 
 
42
 
43
  ```
44
  <|user|>
45
+ {prompt}
46
  <|assistant|>
 
47
  ```
48
 
49
+ ## Provided files
50
+
51
+ Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements.
52
+
53
+ Each separate quant is in a different branch. See below for instructions on fetching from different branches.
54
 
55
+ | Branch | Bits | Group Size | Act Order (desc_act) | File Size | ExLlama Compatible? | Made With | Description |
56
+ | ------ | ---- | ---------- | -------------------- | --------- | ------------------- | --------- | ----------- |
57
+ | main | 4 | None | True | 16.94 GB | True | AutoGPTQ | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. |
58
+ | gptq-4bit-32g-actorder_True | 4 | 32 | True | 19.44 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 32g gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. |
59
+ | gptq-4bit-64g-actorder_True | 4 | 64 | True | 18.18 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 64g uses less VRAM than 32g, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
60
+ | gptq-4bit-128g-actorder_True | 4 | 128 | True | 17.55 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 128g uses even less VRAM, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. |
61
+ | gptq-8bit--1g-actorder_True | 8 | None | True | 32.99 GB | False | AutoGPTQ | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. |
62
+ | gptq-8bit-128g-actorder_False | 8 | 128 | False | 33.73 GB | False | AutoGPTQ | 8-bit, with group size 128g for higher inference quality and without Act Order to improve AutoGPTQ speed. |
63
+ | gptq-3bit--1g-actorder_True | 3 | None | True | 12.92 GB | False | AutoGPTQ | 3-bit, with Act Order and no group size. Lowest possible VRAM requirements. May be lower quality than 3-bit 128g. |
64
+ | gptq-3bit-128g-actorder_False | 3 | 128 | False | 13.51 GB | False | AutoGPTQ | 3-bit, with group size 128g but no act-order. Slightly higher VRAM requirements than 3-bit None. |
65
 
66
+ ## How to download from branches
67
+
68
+ - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/tulu-30B-GPTQ:gptq-4bit-32g-actorder_True`
69
+ - With Git, you can clone a branch with:
70
  ```
71
+ git clone --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/tulu-30B-GPTQ`
72
  ```
73
+ - In Python Transformers code, the branch is the `revision` parameter; see below.
74
+
75
+ ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
76
+
77
+ Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui).
78
 
79
+ It is strongly recommended to use the text-generation-webui one-click-installers unless you know how to make a manual install.
80
 
81
  1. Click the **Model tab**.
82
  2. Under **Download custom model or LoRA**, enter `TheBloke/tulu-30B-GPTQ`.
83
+ - To download from a specific branch, enter for example `TheBloke/tulu-30B-GPTQ:gptq-4bit-32g-actorder_True`
84
+ - see Provided Files above for the list of branches for each option.
85
  3. Click **Download**.
86
  4. The model will start downloading. Once it's finished it will say "Done"
87
  5. In the top left, click the refresh icon next to **Model**.
 
95
 
96
  First make sure you have [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) installed:
97
 
98
+ `GITHUB_ACTIONS=true pip install auto-gptq`
99
 
100
  Then try the following example code:
101
 
102
  ```python
103
  from transformers import AutoTokenizer, pipeline, logging
104
  from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
 
105
 
106
  model_name_or_path = "TheBloke/tulu-30B-GPTQ"
107
  model_basename = "gptq_model-4bit--1g"
 
111
  tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True)
112
 
113
  model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
114
+ model_basename=model_basename
115
  use_safetensors=True,
116
  trust_remote_code=False,
117
  device="cuda:0",
118
  use_triton=use_triton,
119
  quantize_config=None)
120
 
121
+ """
122
+ To download from a specific branch, use the revision parameter, as in this example:
123
+
124
+ model = AutoGPTQForCausalLM.from_quantized(model_name_or_path,
125
+ revision="gptq-4bit-32g-actorder_True",
126
+ model_basename=model_basename,
127
+ use_safetensors=True,
128
+ trust_remote_code=False,
129
+ device="cuda:0",
130
+ quantize_config=None)
131
+ """
132
+
133
  prompt = "Tell me about AI"
134
+ prompt_template=f'''<|user|>
135
+ {prompt}
136
+ <|assistant|>
137
+ '''
138
 
139
  print("\n\n*** Generate:")
140
 
 
161
  print(pipe(prompt_template)[0]['generated_text'])
162
  ```
163
 
164
+ ## Compatibility
 
 
 
 
165
 
166
+ The files provided will work with AutoGPTQ (CUDA and Triton modes), GPTQ-for-LLaMa (only CUDA has been tested), and Occ4m's GPTQ-for-LLaMa fork.
167
 
168
+ ExLlama works with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility.
 
 
 
 
169
 
170
  <!-- footer start -->
171
  ## Discord
172
 
173
  For further support, and discussions on these models and AI in general, join us at:
174
 
175
+ [TheBloke AI's Discord server](https://discord.gg/theblokeai)
176
 
177
  ## Thanks, and how to contribute.
178
 
 
187
  * Patreon: https://patreon.com/TheBlokeAI
188
  * Ko-Fi: https://ko-fi.com/TheBlokeAI
189
 
190
+ **Special thanks to**: Luke from CarbonQuill, Aemon Algiz.
191
 
192
+ **Patreon special mentions**: Space Cruiser, Nikolai Manek, Sam, Chris McCloskey, Rishabh Srivastava, Kalila, Spiking Neurons AB, Khalefa Al-Ahmad, WelcomeToTheClub, Chadd, Lone Striker, Viktor Bowallius, Edmond Seymore, Ai Maven, Chris Smitley, Dave, Alexandros Triantafyllidis, Luke @flexchar, Elle, ya boyyy, Talal Aujan, Alex , Jonathan Leane, Deep Realms, Randy H, subjectnull, Preetika Verma, Joseph William Delisle, Michael Levine, chris gileta, K, Oscar Rangel, LangChain4j, Trenton Dambrowitz, Eugene Pentland, Johann-Peter Hartmann, Femi Adebogun, Illia Dulskyi, senxiiz, Daniel P. Andersen, Sean Connelly, Artur Olbinski, RoA, Mano Prime, Derek Yates, Raven Klaugh, David Flickinger, Willem Michiel, Pieter, Willian Hasse, vamX, Luke Pendergrass, webtim, Ghost , Rainer Wilmers, Nathan LeClaire, Will Dee, Cory Kujawski, John Detwiler, Fred von Graf, biorpg, Iucharbius , Imad Khwaja, Pierre Kircher, terasurfer , Asp the Wyvern, John Villwock, theTransient, zynix , Gabriel Tamborski, Fen Risland, Gabriel Puliatti, Matthew Berman, Pyrater, SuperWojo, Stephen Murray, Karl Bernard, Ajan Kanaga, Greatston Gnanesh, Junyu Yang.
193
 
194
  Thank you to all my generous patrons and donaters!
195
 
 
232
  <|assistant|>
233
  ```
234
 
235
+ For best results, format all inputs in this manner. **Make sure to include a newline after `<|assistant|>`, this can affect generation quality quite a bit.**
236
 
237
  ## Performance
238