Upload README.md
Browse files
README.md
CHANGED
@@ -1,65 +1,86 @@
|
|
1 |
---
|
|
|
2 |
inference: false
|
3 |
license: other
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
<!-- header start -->
|
7 |
-
|
8 |
-
|
|
|
9 |
</div>
|
10 |
<div style="display: flex; justify-content: space-between; width: 100%;">
|
11 |
<div style="display: flex; flex-direction: column; align-items: flex-start;">
|
12 |
-
<p><a href="https://discord.gg/theblokeai">Chat & support:
|
13 |
</div>
|
14 |
<div style="display: flex; flex-direction: column; align-items: flex-end;">
|
15 |
-
<p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
|
16 |
</div>
|
17 |
</div>
|
|
|
|
|
18 |
<!-- header end -->
|
19 |
|
20 |
-
#
|
|
|
|
|
21 |
|
22 |
-
|
23 |
|
24 |
-
This
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
GGML files are for CPU + GPU inference using [llama.cpp](https://github.com/ggerganov/llama.cpp) and libraries and UIs which support this format, such as:
|
27 |
-
* [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
|
28 |
-
* [KoboldCpp](https://github.com/LostRuins/koboldcpp)
|
29 |
-
* [
|
30 |
-
* [
|
31 |
-
* [ctransformers](https://github.com/marella/ctransformers)
|
|
|
32 |
|
33 |
## Repositories available
|
34 |
|
35 |
-
* [
|
36 |
-
* [
|
37 |
-
* [
|
|
|
38 |
|
39 |
-
## Prompt template
|
40 |
|
41 |
```
|
42 |
-
A chat between a curious user and an assistant. The assistant gives helpful, detailed,
|
43 |
-
|
44 |
-
ASSISTANT:
|
45 |
```
|
46 |
|
47 |
<!-- compatibility_ggml start -->
|
48 |
## Compatibility
|
49 |
|
50 |
-
|
51 |
|
52 |
-
|
53 |
|
54 |
-
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
These new quantisation methods are compatible with llama.cpp as of June 6th, commit `2d43387`.
|
59 |
-
|
60 |
-
They are now also compatible with recent releases of text-generation-webui, KoboldCpp, llama-cpp-python and ctransformers. Other tools and libraries may or may not be compatible - check their documentation if in doubt.
|
61 |
|
62 |
## Explanation of the new k-quant methods
|
|
|
|
|
63 |
|
64 |
The new methods available are:
|
65 |
* GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
|
@@ -70,58 +91,67 @@ The new methods available are:
|
|
70 |
* GGML_TYPE_Q8_K - "type-0" 8-bit quantization. Only used for quantizing intermediate results. The difference to the existing Q8_0 is that the block size is 256. All 2-6 bit dot products are implemented for this quantization type.
|
71 |
|
72 |
Refer to the Provided Files table below to see what files use which methods, and how.
|
|
|
73 |
<!-- compatibility_ggml end -->
|
74 |
|
75 |
## Provided files
|
|
|
76 |
| Name | Quant method | Bits | Size | Max RAM required | Use case |
|
77 |
| ---- | ---- | ---- | ---- | ---- | ----- |
|
78 |
-
| vicuna-33b.ggmlv3.q2_K.bin | q2_K | 2 | 13.71 GB
|
79 |
-
| vicuna-33b.ggmlv3.
|
80 |
-
| vicuna-33b.ggmlv3.q3_K_M.bin | q3_K_M | 3 | 15.72 GB
|
81 |
-
| vicuna-33b.ggmlv3.
|
82 |
-
| vicuna-33b.ggmlv3.q4_0.bin | q4_0 | 4 | 18.30 GB
|
83 |
-
| vicuna-33b.ggmlv3.
|
84 |
-
| vicuna-33b.ggmlv3.q4_K_M.bin | q4_K_M | 4 | 19.62 GB
|
85 |
-
| vicuna-33b.ggmlv3.
|
86 |
-
| vicuna-33b.ggmlv3.q5_0.bin | q5_0 | 5 | 22.37 GB
|
87 |
-
| vicuna-33b.ggmlv3.
|
88 |
-
| vicuna-33b.ggmlv3.q5_K_M.bin | q5_K_M | 5 | 23.05 GB
|
89 |
-
| vicuna-33b.ggmlv3.
|
90 |
-
| vicuna-33b.ggmlv3.q6_K.bin | q6_K | 6 | 26.69 GB
|
91 |
-
| vicuna-33b.ggmlv3.q8_0.bin | q8_0 | 8 | 34.56 GB
|
92 |
|
93 |
**Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
|
94 |
|
95 |
## How to run in `llama.cpp`
|
96 |
|
97 |
-
|
|
|
|
|
98 |
|
99 |
```
|
100 |
-
./main -t 10 -ngl 32 -m vicuna-33b.ggmlv3.
|
101 |
```
|
102 |
-
|
103 |
-
|
104 |
-
If not able to fully offload to GPU, you should use more cores. Change `-t 10` to the number of physical CPU cores you have, or a lower number depending on what gives best performance.
|
105 |
|
106 |
Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
|
107 |
|
|
|
|
|
108 |
If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
|
109 |
|
|
|
|
|
110 |
## How to run in `text-generation-webui`
|
111 |
|
112 |
-
Further instructions here: [text-generation-webui/docs/llama.cpp
|
113 |
|
114 |
<!-- footer start -->
|
|
|
115 |
## Discord
|
116 |
|
117 |
For further support, and discussions on these models and AI in general, join us at:
|
118 |
|
119 |
[TheBloke AI's Discord server](https://discord.gg/theblokeai)
|
120 |
|
121 |
-
## Thanks, and how to contribute
|
122 |
|
123 |
Thanks to the [chirper.ai](https://chirper.ai) team!
|
124 |
|
|
|
|
|
125 |
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
|
126 |
|
127 |
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
|
@@ -131,15 +161,18 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
|
|
131 |
* Patreon: https://patreon.com/TheBlokeAI
|
132 |
* Ko-Fi: https://ko-fi.com/TheBlokeAI
|
133 |
|
134 |
-
**Special thanks to**:
|
|
|
|
|
135 |
|
136 |
-
**Patreon special mentions**: Pyrater, WelcomeToTheClub, Kalila, Mano Prime, Trenton Dambrowitz, Spiking Neurons AB, Pierre Kircher, Fen Risland, Kevin Schuppel, Luke, Rainer Wilmers, vamX, Gabriel Puliatti, Alex , Karl Bernard, Ajan Kanaga, Talal Aujan, Space Cruiser, ya boyyy, biorpg, Johann-Peter Hartmann, Asp the Wyvern, Ai Maven, Ghost , Preetika Verma, Nikolai Manek, trip7s trip, John Detwiler, Fred von Graf, Artur Olbinski, subjectnull, John Villwock, Junyu Yang, Rod A, Lone Striker, Chris McCloskey, Iucharbius , Matthew Berman, Illia Dulskyi, Khalefa Al-Ahmad, Imad Khwaja, chris gileta, Willem Michiel, Greatston Gnanesh, Derek Yates, K, Alps Aficionado, Oscar Rangel, David Flickinger, Luke Pendergrass, Deep Realms, Eugene Pentland, Cory Kujawski, terasurfer , Jonathan Leane, senxiiz, Joseph William Delisle, Sean Connelly, webtim, zynix , Nathan LeClaire.
|
137 |
|
138 |
Thank you to all my generous patrons and donaters!
|
139 |
|
|
|
|
|
140 |
<!-- footer end -->
|
141 |
|
142 |
-
# Original model card: LmSys' Vicuna 33B
|
143 |
|
144 |
|
145 |
# Vicuna Model Card
|
@@ -167,19 +200,18 @@ The primary intended users of the model are researchers and hobbyists in natural
|
|
167 |
|
168 |
## How to Get Started with the Model
|
169 |
|
170 |
-
Command line interface: https://github.com/lm-sys/FastChat#vicuna-weights.
|
171 |
-
APIs (OpenAI API, Huggingface API): https://github.com/lm-sys/FastChat/tree/main#api.
|
172 |
|
173 |
## Training Details
|
174 |
|
175 |
Vicuna v1.3 is fine-tuned from LLaMA with supervised instruction fine-tuning.
|
176 |
-
The training data is around
|
177 |
See more details in the "Training Details of Vicuna Models" section in the appendix of this [paper](https://arxiv.org/pdf/2306.05685.pdf).
|
178 |
|
179 |
## Evaluation
|
180 |
|
181 |
-
Vicuna is evaluated with standard benchmarks, human preference, and LLM-as-a-judge. See more details in this [paper](https://arxiv.org/pdf/2306.05685.pdf).
|
182 |
|
183 |
## Difference between different versions of Vicuna
|
184 |
See [vicuna_weights_version.md](https://github.com/lm-sys/FastChat/blob/main/docs/vicuna_weights_version.md)
|
185 |
-
|
|
|
1 |
---
|
2 |
+
base_model: https://huggingface.co/lmsys/vicuna-33b-v1.3
|
3 |
inference: false
|
4 |
license: other
|
5 |
+
model_creator: Large Model Systems Organization
|
6 |
+
model_name: Vicuna 33B V1.3
|
7 |
+
model_type: llama
|
8 |
+
prompt_template: 'A chat between a curious user and an artificial intelligence assistant.
|
9 |
+
The assistant gives helpful, detailed, and polite answers to the user''s questions.
|
10 |
+
USER: {prompt} ASSISTANT:
|
11 |
+
|
12 |
+
'
|
13 |
+
quantized_by: TheBloke
|
14 |
---
|
15 |
|
16 |
<!-- header start -->
|
17 |
+
<!-- 200823 -->
|
18 |
+
<div style="width: auto; margin-left: auto; margin-right: auto">
|
19 |
+
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
|
20 |
</div>
|
21 |
<div style="display: flex; justify-content: space-between; width: 100%;">
|
22 |
<div style="display: flex; flex-direction: column; align-items: flex-start;">
|
23 |
+
<p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
|
24 |
</div>
|
25 |
<div style="display: flex; flex-direction: column; align-items: flex-end;">
|
26 |
+
<p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
|
27 |
</div>
|
28 |
</div>
|
29 |
+
<div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
|
30 |
+
<hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
|
31 |
<!-- header end -->
|
32 |
|
33 |
+
# Vicuna 33B V1.3 - GGML
|
34 |
+
- Model creator: [Large Model Systems Organization](https://huggingface.co/lmsys)
|
35 |
+
- Original model: [Vicuna 33B V1.3](https://huggingface.co/lmsys/vicuna-33b-v1.3)
|
36 |
|
37 |
+
## Description
|
38 |
|
39 |
+
This repo contains GGML format model files for [LmSys' Vicuna 33B 1.3](https://huggingface.co/lmsys/vicuna-33b-v1.3).
|
40 |
+
|
41 |
+
### Important note regarding GGML files.
|
42 |
+
|
43 |
+
The GGML format has now been superseded by GGUF. As of August 21st 2023, [llama.cpp](https://github.com/ggerganov/llama.cpp) no longer supports GGML models. Third party clients and libraries are expected to still support it for a time, but many may also drop support.
|
44 |
+
|
45 |
+
Please use the GGUF models instead.
|
46 |
+
### About GGML
|
47 |
|
48 |
GGML files are for CPU + GPU inference using [llama.cpp](https://github.com/ggerganov/llama.cpp) and libraries and UIs which support this format, such as:
|
49 |
+
* [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most popular web UI. Supports NVidia CUDA GPU acceleration.
|
50 |
+
* [KoboldCpp](https://github.com/LostRuins/koboldcpp), a powerful GGML web UI with GPU acceleration on all platforms (CUDA and OpenCL). Especially good for story telling.
|
51 |
+
* [LM Studio](https://lmstudio.ai/), a fully featured local GUI with GPU acceleration on both Windows (NVidia and AMD), and macOS.
|
52 |
+
* [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with CUDA GPU acceleration via the c_transformers backend.
|
53 |
+
* [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server.
|
54 |
+
* [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
|
55 |
|
56 |
## Repositories available
|
57 |
|
58 |
+
* [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/vicuna-33B-AWQ)
|
59 |
+
* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/vicuna-33B-GPTQ)
|
60 |
+
* [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/vicuna-33B-GGUF)
|
61 |
+
* [Large Model Systems Organization's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/lmsys/vicuna-33b-v1.3)
|
62 |
|
63 |
+
## Prompt template: Vicuna
|
64 |
|
65 |
```
|
66 |
+
A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {prompt} ASSISTANT:
|
67 |
+
|
|
|
68 |
```
|
69 |
|
70 |
<!-- compatibility_ggml start -->
|
71 |
## Compatibility
|
72 |
|
73 |
+
These quantised GGML files are compatible with llama.cpp between June 6th (commit `2d43387`) and August 21st 2023.
|
74 |
|
75 |
+
For support with latest llama.cpp, please use GGUF files instead.
|
76 |
|
77 |
+
The final llama.cpp commit with support for GGML was: [dadbed99e65252d79f81101a392d0d6497b86caa](https://github.com/ggerganov/llama.cpp/commit/dadbed99e65252d79f81101a392d0d6497b86caa)
|
78 |
|
79 |
+
As of August 23rd 2023 they are still compatible with all UIs, libraries and utilities which use GGML. This may change in the future.
|
|
|
|
|
|
|
|
|
80 |
|
81 |
## Explanation of the new k-quant methods
|
82 |
+
<details>
|
83 |
+
<summary>Click to see details</summary>
|
84 |
|
85 |
The new methods available are:
|
86 |
* GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
|
|
|
91 |
* GGML_TYPE_Q8_K - "type-0" 8-bit quantization. Only used for quantizing intermediate results. The difference to the existing Q8_0 is that the block size is 256. All 2-6 bit dot products are implemented for this quantization type.
|
92 |
|
93 |
Refer to the Provided Files table below to see what files use which methods, and how.
|
94 |
+
</details>
|
95 |
<!-- compatibility_ggml end -->
|
96 |
|
97 |
## Provided files
|
98 |
+
|
99 |
| Name | Quant method | Bits | Size | Max RAM required | Use case |
|
100 |
| ---- | ---- | ---- | ---- | ---- | ----- |
|
101 |
+
| [vicuna-33b.ggmlv3.q2_K.bin](https://huggingface.co/TheBloke/vicuna-33B-GGML/blob/main/vicuna-33b.ggmlv3.q2_K.bin) | q2_K | 2 | 13.71 GB| 16.21 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. |
|
102 |
+
| [vicuna-33b.ggmlv3.q3_K_S.bin](https://huggingface.co/TheBloke/vicuna-33B-GGML/blob/main/vicuna-33b.ggmlv3.q3_K_S.bin) | q3_K_S | 3 | 14.06 GB| 16.56 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors |
|
103 |
+
| [vicuna-33b.ggmlv3.q3_K_M.bin](https://huggingface.co/TheBloke/vicuna-33B-GGML/blob/main/vicuna-33b.ggmlv3.q3_K_M.bin) | q3_K_M | 3 | 15.72 GB| 18.22 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
|
104 |
+
| [vicuna-33b.ggmlv3.q3_K_L.bin](https://huggingface.co/TheBloke/vicuna-33B-GGML/blob/main/vicuna-33b.ggmlv3.q3_K_L.bin) | q3_K_L | 3 | 17.28 GB| 19.78 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
|
105 |
+
| [vicuna-33b.ggmlv3.q4_0.bin](https://huggingface.co/TheBloke/vicuna-33B-GGML/blob/main/vicuna-33b.ggmlv3.q4_0.bin) | q4_0 | 4 | 18.30 GB| 20.80 GB | Original quant method, 4-bit. |
|
106 |
+
| [vicuna-33b.ggmlv3.q4_K_S.bin](https://huggingface.co/TheBloke/vicuna-33B-GGML/blob/main/vicuna-33b.ggmlv3.q4_K_S.bin) | q4_K_S | 4 | 18.36 GB| 20.86 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors |
|
107 |
+
| [vicuna-33b.ggmlv3.q4_K_M.bin](https://huggingface.co/TheBloke/vicuna-33B-GGML/blob/main/vicuna-33b.ggmlv3.q4_K_M.bin) | q4_K_M | 4 | 19.62 GB| 22.12 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K |
|
108 |
+
| [vicuna-33b.ggmlv3.q4_1.bin](https://huggingface.co/TheBloke/vicuna-33B-GGML/blob/main/vicuna-33b.ggmlv3.q4_1.bin) | q4_1 | 4 | 20.33 GB| 22.83 GB | Original quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. |
|
109 |
+
| [vicuna-33b.ggmlv3.q5_0.bin](https://huggingface.co/TheBloke/vicuna-33B-GGML/blob/main/vicuna-33b.ggmlv3.q5_0.bin) | q5_0 | 5 | 22.37 GB| 24.87 GB | Original quant method, 5-bit. Higher accuracy, higher resource usage and slower inference. |
|
110 |
+
| [vicuna-33b.ggmlv3.q5_K_S.bin](https://huggingface.co/TheBloke/vicuna-33B-GGML/blob/main/vicuna-33b.ggmlv3.q5_K_S.bin) | q5_K_S | 5 | 22.40 GB| 24.90 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors |
|
111 |
+
| [vicuna-33b.ggmlv3.q5_K_M.bin](https://huggingface.co/TheBloke/vicuna-33B-GGML/blob/main/vicuna-33b.ggmlv3.q5_K_M.bin) | q5_K_M | 5 | 23.05 GB| 25.55 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K |
|
112 |
+
| [vicuna-33b.ggmlv3.q5_1.bin](https://huggingface.co/TheBloke/vicuna-33B-GGML/blob/main/vicuna-33b.ggmlv3.q5_1.bin) | q5_1 | 5 | 24.40 GB| 26.90 GB | Original quant method, 5-bit. Even higher accuracy, resource usage and slower inference. |
|
113 |
+
| [vicuna-33b.ggmlv3.q6_K.bin](https://huggingface.co/TheBloke/vicuna-33B-GGML/blob/main/vicuna-33b.ggmlv3.q6_K.bin) | q6_K | 6 | 26.69 GB| 29.19 GB | New k-quant method. Uses GGML_TYPE_Q8_K for all tensors - 6-bit quantization |
|
114 |
+
| [vicuna-33b.ggmlv3.q8_0.bin](https://huggingface.co/TheBloke/vicuna-33B-GGML/blob/main/vicuna-33b.ggmlv3.q8_0.bin) | q8_0 | 8 | 34.56 GB| 37.06 GB | Original quant method, 8-bit. Almost indistinguishable from float16. High resource use and slow. Not recommended for most users. |
|
115 |
|
116 |
**Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
|
117 |
|
118 |
## How to run in `llama.cpp`
|
119 |
|
120 |
+
Make sure you are using `llama.cpp` from commit [dadbed99e65252d79f81101a392d0d6497b86caa](https://github.com/ggerganov/llama.cpp/commit/dadbed99e65252d79f81101a392d0d6497b86caa) or earlier.
|
121 |
+
|
122 |
+
For compatibility with latest llama.cpp, please use GGUF files instead.
|
123 |
|
124 |
```
|
125 |
+
./main -t 10 -ngl 32 -m vicuna-33b.ggmlv3.Q4_K_M.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {prompt} ASSISTANT:"
|
126 |
```
|
127 |
+
Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`.
|
|
|
|
|
128 |
|
129 |
Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
|
130 |
|
131 |
+
Change `-c 2048` to the desired sequence length for this model. For example, `-c 4096` for a Llama 2 model. For models that use RoPE, add `--rope-freq-base 10000 --rope-freq-scale 0.5` for doubled context, or `--rope-freq-base 10000 --rope-freq-scale 0.25` for 4x context.
|
132 |
+
|
133 |
If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
|
134 |
|
135 |
+
For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)
|
136 |
+
|
137 |
## How to run in `text-generation-webui`
|
138 |
|
139 |
+
Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp.md).
|
140 |
|
141 |
<!-- footer start -->
|
142 |
+
<!-- 200823 -->
|
143 |
## Discord
|
144 |
|
145 |
For further support, and discussions on these models and AI in general, join us at:
|
146 |
|
147 |
[TheBloke AI's Discord server](https://discord.gg/theblokeai)
|
148 |
|
149 |
+
## Thanks, and how to contribute
|
150 |
|
151 |
Thanks to the [chirper.ai](https://chirper.ai) team!
|
152 |
|
153 |
+
Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
|
154 |
+
|
155 |
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
|
156 |
|
157 |
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
|
|
|
161 |
* Patreon: https://patreon.com/TheBlokeAI
|
162 |
* Ko-Fi: https://ko-fi.com/TheBlokeAI
|
163 |
|
164 |
+
**Special thanks to**: Aemon Algiz.
|
165 |
+
|
166 |
+
**Patreon special mentions**: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov
|
167 |
|
|
|
168 |
|
169 |
Thank you to all my generous patrons and donaters!
|
170 |
|
171 |
+
And thank you again to a16z for their generous grant.
|
172 |
+
|
173 |
<!-- footer end -->
|
174 |
|
175 |
+
# Original model card: LmSys' Vicuna 33B 1.3
|
176 |
|
177 |
|
178 |
# Vicuna Model Card
|
|
|
200 |
|
201 |
## How to Get Started with the Model
|
202 |
|
203 |
+
- Command line interface: https://github.com/lm-sys/FastChat#vicuna-weights.
|
204 |
+
- APIs (OpenAI API, Huggingface API): https://github.com/lm-sys/FastChat/tree/main#api.
|
205 |
|
206 |
## Training Details
|
207 |
|
208 |
Vicuna v1.3 is fine-tuned from LLaMA with supervised instruction fine-tuning.
|
209 |
+
The training data is around 125K conversations collected from ShareGPT.com.
|
210 |
See more details in the "Training Details of Vicuna Models" section in the appendix of this [paper](https://arxiv.org/pdf/2306.05685.pdf).
|
211 |
|
212 |
## Evaluation
|
213 |
|
214 |
+
Vicuna is evaluated with standard benchmarks, human preference, and LLM-as-a-judge. See more details in this [paper](https://arxiv.org/pdf/2306.05685.pdf) and [leaderboard](https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard).
|
215 |
|
216 |
## Difference between different versions of Vicuna
|
217 |
See [vicuna_weights_version.md](https://github.com/lm-sys/FastChat/blob/main/docs/vicuna_weights_version.md)
|
|