TheBloke commited on
Commit
9be1f87
1 Parent(s): 9fbecf3

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +88 -56
README.md CHANGED
@@ -1,65 +1,86 @@
1
  ---
 
2
  inference: false
3
  license: other
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
  <!-- header start -->
7
- <div style="width: 100%;">
8
- <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
 
9
  </div>
10
  <div style="display: flex; justify-content: space-between; width: 100%;">
11
  <div style="display: flex; flex-direction: column; align-items: flex-start;">
12
- <p><a href="https://discord.gg/theblokeai">Chat & support: my new Discord server</a></p>
13
  </div>
14
  <div style="display: flex; flex-direction: column; align-items: flex-end;">
15
- <p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
16
  </div>
17
  </div>
 
 
18
  <!-- header end -->
19
 
20
- # LmSys' Vicuna 33B (final) GGML
 
 
21
 
22
- These files are GGML format model files for [LmSys' Vicuna 33B (final)](https://huggingface.co/lmsys/vicuna-33b-v1.3).
23
 
24
- This is the final version of Vicuna 33B, replacing the preview version previously released.
 
 
 
 
 
 
 
25
 
26
  GGML files are for CPU + GPU inference using [llama.cpp](https://github.com/ggerganov/llama.cpp) and libraries and UIs which support this format, such as:
27
- * [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
28
- * [KoboldCpp](https://github.com/LostRuins/koboldcpp)
29
- * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui)
30
- * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python)
31
- * [ctransformers](https://github.com/marella/ctransformers)
 
32
 
33
  ## Repositories available
34
 
35
- * [4-bit GPTQ models for GPU inference](https://huggingface.co/TheBloke/vicuna-33B-GPTQ)
36
- * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/vicuna-33B-GGML)
37
- * [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/lmsys/vicuna-33b-v1.3)
 
38
 
39
- ## Prompt template
40
 
41
  ```
42
- A chat between a curious user and an assistant. The assistant gives helpful, detailed, accurate, uncensored responses to the user's input
43
- USER: prompt
44
- ASSISTANT:
45
  ```
46
 
47
  <!-- compatibility_ggml start -->
48
  ## Compatibility
49
 
50
- ### Original llama.cpp quant methods: `q4_0, q4_1, q5_0, q5_1, q8_0`
51
 
52
- I have quantized these 'original' quantisation methods using an older version of llama.cpp so that they remain compatible with llama.cpp as of May 19th, commit `2d5db48`.
53
 
54
- These are guaranteed to be compatbile with any UIs, tools and libraries released since late May.
55
 
56
- ### New k-quant methods: `q2_K, q3_K_S, q3_K_M, q3_K_L, q4_K_S, q4_K_M, q5_K_S, q6_K`
57
-
58
- These new quantisation methods are compatible with llama.cpp as of June 6th, commit `2d43387`.
59
-
60
- They are now also compatible with recent releases of text-generation-webui, KoboldCpp, llama-cpp-python and ctransformers. Other tools and libraries may or may not be compatible - check their documentation if in doubt.
61
 
62
  ## Explanation of the new k-quant methods
 
 
63
 
64
  The new methods available are:
65
  * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
@@ -70,58 +91,67 @@ The new methods available are:
70
  * GGML_TYPE_Q8_K - "type-0" 8-bit quantization. Only used for quantizing intermediate results. The difference to the existing Q8_0 is that the block size is 256. All 2-6 bit dot products are implemented for this quantization type.
71
 
72
  Refer to the Provided Files table below to see what files use which methods, and how.
 
73
  <!-- compatibility_ggml end -->
74
 
75
  ## Provided files
 
76
  | Name | Quant method | Bits | Size | Max RAM required | Use case |
77
  | ---- | ---- | ---- | ---- | ---- | ----- |
78
- | vicuna-33b.ggmlv3.q2_K.bin | q2_K | 2 | 13.71 GB | 16.21 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. |
79
- | vicuna-33b.ggmlv3.q3_K_L.bin | q3_K_L | 3 | 17.28 GB | 19.78 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
80
- | vicuna-33b.ggmlv3.q3_K_M.bin | q3_K_M | 3 | 15.72 GB | 18.22 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
81
- | vicuna-33b.ggmlv3.q3_K_S.bin | q3_K_S | 3 | 14.06 GB | 16.56 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors |
82
- | vicuna-33b.ggmlv3.q4_0.bin | q4_0 | 4 | 18.30 GB | 20.80 GB | Original llama.cpp quant method, 4-bit. |
83
- | vicuna-33b.ggmlv3.q4_1.bin | q4_1 | 4 | 20.33 GB | 22.83 GB | Original llama.cpp quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. |
84
- | vicuna-33b.ggmlv3.q4_K_M.bin | q4_K_M | 4 | 19.62 GB | 22.12 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K |
85
- | vicuna-33b.ggmlv3.q4_K_S.bin | q4_K_S | 4 | 18.36 GB | 20.86 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors |
86
- | vicuna-33b.ggmlv3.q5_0.bin | q5_0 | 5 | 22.37 GB | 24.87 GB | Original llama.cpp quant method, 5-bit. Higher accuracy, higher resource usage and slower inference. |
87
- | vicuna-33b.ggmlv3.q5_1.bin | q5_1 | 5 | 24.40 GB | 26.90 GB | Original llama.cpp quant method, 5-bit. Even higher accuracy, resource usage and slower inference. |
88
- | vicuna-33b.ggmlv3.q5_K_M.bin | q5_K_M | 5 | 23.05 GB | 25.55 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K |
89
- | vicuna-33b.ggmlv3.q5_K_S.bin | q5_K_S | 5 | 22.40 GB | 24.90 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors |
90
- | vicuna-33b.ggmlv3.q6_K.bin | q6_K | 6 | 26.69 GB | 29.19 GB | New k-quant method. Uses GGML_TYPE_Q8_K - 6-bit quantization - for all tensors |
91
- | vicuna-33b.ggmlv3.q8_0.bin | q8_0 | 8 | 34.56 GB | 37.06 GB | Original llama.cpp quant method, 8-bit. Almost indistinguishable from float16. High resource use and slow. Not recommended for most users. |
92
 
93
  **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
94
 
95
  ## How to run in `llama.cpp`
96
 
97
- I use the following command line; adjust for your tastes and needs:
 
 
98
 
99
  ```
100
- ./main -t 10 -ngl 32 -m vicuna-33b.ggmlv3.q5_0.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "### Instruction: Write a story about llamas\n### Response:"
101
  ```
102
- If you're able to use full GPU offloading, you should use `-t 1` to get best performance.
103
-
104
- If not able to fully offload to GPU, you should use more cores. Change `-t 10` to the number of physical CPU cores you have, or a lower number depending on what gives best performance.
105
 
106
  Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
107
 
 
 
108
  If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
109
 
 
 
110
  ## How to run in `text-generation-webui`
111
 
112
- Further instructions here: [text-generation-webui/docs/llama.cpp-models.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp-models.md).
113
 
114
  <!-- footer start -->
 
115
  ## Discord
116
 
117
  For further support, and discussions on these models and AI in general, join us at:
118
 
119
  [TheBloke AI's Discord server](https://discord.gg/theblokeai)
120
 
121
- ## Thanks, and how to contribute.
122
 
123
  Thanks to the [chirper.ai](https://chirper.ai) team!
124
 
 
 
125
  I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
126
 
127
  If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
@@ -131,15 +161,18 @@ Donaters will get priority support on any and all AI/LLM/model questions and req
131
  * Patreon: https://patreon.com/TheBlokeAI
132
  * Ko-Fi: https://ko-fi.com/TheBlokeAI
133
 
134
- **Special thanks to**: Luke from CarbonQuill, Aemon Algiz, Dmitriy Samsonov.
 
 
135
 
136
- **Patreon special mentions**: Pyrater, WelcomeToTheClub, Kalila, Mano Prime, Trenton Dambrowitz, Spiking Neurons AB, Pierre Kircher, Fen Risland, Kevin Schuppel, Luke, Rainer Wilmers, vamX, Gabriel Puliatti, Alex , Karl Bernard, Ajan Kanaga, Talal Aujan, Space Cruiser, ya boyyy, biorpg, Johann-Peter Hartmann, Asp the Wyvern, Ai Maven, Ghost , Preetika Verma, Nikolai Manek, trip7s trip, John Detwiler, Fred von Graf, Artur Olbinski, subjectnull, John Villwock, Junyu Yang, Rod A, Lone Striker, Chris McCloskey, Iucharbius , Matthew Berman, Illia Dulskyi, Khalefa Al-Ahmad, Imad Khwaja, chris gileta, Willem Michiel, Greatston Gnanesh, Derek Yates, K, Alps Aficionado, Oscar Rangel, David Flickinger, Luke Pendergrass, Deep Realms, Eugene Pentland, Cory Kujawski, terasurfer , Jonathan Leane, senxiiz, Joseph William Delisle, Sean Connelly, webtim, zynix , Nathan LeClaire.
137
 
138
  Thank you to all my generous patrons and donaters!
139
 
 
 
140
  <!-- footer end -->
141
 
142
- # Original model card: LmSys' Vicuna 33B (final)
143
 
144
 
145
  # Vicuna Model Card
@@ -167,19 +200,18 @@ The primary intended users of the model are researchers and hobbyists in natural
167
 
168
  ## How to Get Started with the Model
169
 
170
- Command line interface: https://github.com/lm-sys/FastChat#vicuna-weights.
171
- APIs (OpenAI API, Huggingface API): https://github.com/lm-sys/FastChat/tree/main#api.
172
 
173
  ## Training Details
174
 
175
  Vicuna v1.3 is fine-tuned from LLaMA with supervised instruction fine-tuning.
176
- The training data is around 140K conversations collected from ShareGPT.com.
177
  See more details in the "Training Details of Vicuna Models" section in the appendix of this [paper](https://arxiv.org/pdf/2306.05685.pdf).
178
 
179
  ## Evaluation
180
 
181
- Vicuna is evaluated with standard benchmarks, human preference, and LLM-as-a-judge. See more details in this [paper](https://arxiv.org/pdf/2306.05685.pdf).
182
 
183
  ## Difference between different versions of Vicuna
184
  See [vicuna_weights_version.md](https://github.com/lm-sys/FastChat/blob/main/docs/vicuna_weights_version.md)
185
-
 
1
  ---
2
+ base_model: https://huggingface.co/lmsys/vicuna-33b-v1.3
3
  inference: false
4
  license: other
5
+ model_creator: Large Model Systems Organization
6
+ model_name: Vicuna 33B V1.3
7
+ model_type: llama
8
+ prompt_template: 'A chat between a curious user and an artificial intelligence assistant.
9
+ The assistant gives helpful, detailed, and polite answers to the user''s questions.
10
+ USER: {prompt} ASSISTANT:
11
+
12
+ '
13
+ quantized_by: TheBloke
14
  ---
15
 
16
  <!-- header start -->
17
+ <!-- 200823 -->
18
+ <div style="width: auto; margin-left: auto; margin-right: auto">
19
+ <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
20
  </div>
21
  <div style="display: flex; justify-content: space-between; width: 100%;">
22
  <div style="display: flex; flex-direction: column; align-items: flex-start;">
23
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p>
24
  </div>
25
  <div style="display: flex; flex-direction: column; align-items: flex-end;">
26
+ <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
27
  </div>
28
  </div>
29
+ <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div>
30
+ <hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
31
  <!-- header end -->
32
 
33
+ # Vicuna 33B V1.3 - GGML
34
+ - Model creator: [Large Model Systems Organization](https://huggingface.co/lmsys)
35
+ - Original model: [Vicuna 33B V1.3](https://huggingface.co/lmsys/vicuna-33b-v1.3)
36
 
37
+ ## Description
38
 
39
+ This repo contains GGML format model files for [LmSys' Vicuna 33B 1.3](https://huggingface.co/lmsys/vicuna-33b-v1.3).
40
+
41
+ ### Important note regarding GGML files.
42
+
43
+ The GGML format has now been superseded by GGUF. As of August 21st 2023, [llama.cpp](https://github.com/ggerganov/llama.cpp) no longer supports GGML models. Third party clients and libraries are expected to still support it for a time, but many may also drop support.
44
+
45
+ Please use the GGUF models instead.
46
+ ### About GGML
47
 
48
  GGML files are for CPU + GPU inference using [llama.cpp](https://github.com/ggerganov/llama.cpp) and libraries and UIs which support this format, such as:
49
+ * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most popular web UI. Supports NVidia CUDA GPU acceleration.
50
+ * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a powerful GGML web UI with GPU acceleration on all platforms (CUDA and OpenCL). Especially good for story telling.
51
+ * [LM Studio](https://lmstudio.ai/), a fully featured local GUI with GPU acceleration on both Windows (NVidia and AMD), and macOS.
52
+ * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with CUDA GPU acceleration via the c_transformers backend.
53
+ * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server.
54
+ * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
55
 
56
  ## Repositories available
57
 
58
+ * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/vicuna-33B-AWQ)
59
+ * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/vicuna-33B-GPTQ)
60
+ * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/vicuna-33B-GGUF)
61
+ * [Large Model Systems Organization's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/lmsys/vicuna-33b-v1.3)
62
 
63
+ ## Prompt template: Vicuna
64
 
65
  ```
66
+ A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {prompt} ASSISTANT:
67
+
 
68
  ```
69
 
70
  <!-- compatibility_ggml start -->
71
  ## Compatibility
72
 
73
+ These quantised GGML files are compatible with llama.cpp between June 6th (commit `2d43387`) and August 21st 2023.
74
 
75
+ For support with latest llama.cpp, please use GGUF files instead.
76
 
77
+ The final llama.cpp commit with support for GGML was: [dadbed99e65252d79f81101a392d0d6497b86caa](https://github.com/ggerganov/llama.cpp/commit/dadbed99e65252d79f81101a392d0d6497b86caa)
78
 
79
+ As of August 23rd 2023 they are still compatible with all UIs, libraries and utilities which use GGML. This may change in the future.
 
 
 
 
80
 
81
  ## Explanation of the new k-quant methods
82
+ <details>
83
+ <summary>Click to see details</summary>
84
 
85
  The new methods available are:
86
  * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
 
91
  * GGML_TYPE_Q8_K - "type-0" 8-bit quantization. Only used for quantizing intermediate results. The difference to the existing Q8_0 is that the block size is 256. All 2-6 bit dot products are implemented for this quantization type.
92
 
93
  Refer to the Provided Files table below to see what files use which methods, and how.
94
+ </details>
95
  <!-- compatibility_ggml end -->
96
 
97
  ## Provided files
98
+
99
  | Name | Quant method | Bits | Size | Max RAM required | Use case |
100
  | ---- | ---- | ---- | ---- | ---- | ----- |
101
+ | [vicuna-33b.ggmlv3.q2_K.bin](https://huggingface.co/TheBloke/vicuna-33B-GGML/blob/main/vicuna-33b.ggmlv3.q2_K.bin) | q2_K | 2 | 13.71 GB| 16.21 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.vw and feed_forward.w2 tensors, GGML_TYPE_Q2_K for the other tensors. |
102
+ | [vicuna-33b.ggmlv3.q3_K_S.bin](https://huggingface.co/TheBloke/vicuna-33B-GGML/blob/main/vicuna-33b.ggmlv3.q3_K_S.bin) | q3_K_S | 3 | 14.06 GB| 16.56 GB | New k-quant method. Uses GGML_TYPE_Q3_K for all tensors |
103
+ | [vicuna-33b.ggmlv3.q3_K_M.bin](https://huggingface.co/TheBloke/vicuna-33B-GGML/blob/main/vicuna-33b.ggmlv3.q3_K_M.bin) | q3_K_M | 3 | 15.72 GB| 18.22 GB | New k-quant method. Uses GGML_TYPE_Q4_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
104
+ | [vicuna-33b.ggmlv3.q3_K_L.bin](https://huggingface.co/TheBloke/vicuna-33B-GGML/blob/main/vicuna-33b.ggmlv3.q3_K_L.bin) | q3_K_L | 3 | 17.28 GB| 19.78 GB | New k-quant method. Uses GGML_TYPE_Q5_K for the attention.wv, attention.wo, and feed_forward.w2 tensors, else GGML_TYPE_Q3_K |
105
+ | [vicuna-33b.ggmlv3.q4_0.bin](https://huggingface.co/TheBloke/vicuna-33B-GGML/blob/main/vicuna-33b.ggmlv3.q4_0.bin) | q4_0 | 4 | 18.30 GB| 20.80 GB | Original quant method, 4-bit. |
106
+ | [vicuna-33b.ggmlv3.q4_K_S.bin](https://huggingface.co/TheBloke/vicuna-33B-GGML/blob/main/vicuna-33b.ggmlv3.q4_K_S.bin) | q4_K_S | 4 | 18.36 GB| 20.86 GB | New k-quant method. Uses GGML_TYPE_Q4_K for all tensors |
107
+ | [vicuna-33b.ggmlv3.q4_K_M.bin](https://huggingface.co/TheBloke/vicuna-33B-GGML/blob/main/vicuna-33b.ggmlv3.q4_K_M.bin) | q4_K_M | 4 | 19.62 GB| 22.12 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q4_K |
108
+ | [vicuna-33b.ggmlv3.q4_1.bin](https://huggingface.co/TheBloke/vicuna-33B-GGML/blob/main/vicuna-33b.ggmlv3.q4_1.bin) | q4_1 | 4 | 20.33 GB| 22.83 GB | Original quant method, 4-bit. Higher accuracy than q4_0 but not as high as q5_0. However has quicker inference than q5 models. |
109
+ | [vicuna-33b.ggmlv3.q5_0.bin](https://huggingface.co/TheBloke/vicuna-33B-GGML/blob/main/vicuna-33b.ggmlv3.q5_0.bin) | q5_0 | 5 | 22.37 GB| 24.87 GB | Original quant method, 5-bit. Higher accuracy, higher resource usage and slower inference. |
110
+ | [vicuna-33b.ggmlv3.q5_K_S.bin](https://huggingface.co/TheBloke/vicuna-33B-GGML/blob/main/vicuna-33b.ggmlv3.q5_K_S.bin) | q5_K_S | 5 | 22.40 GB| 24.90 GB | New k-quant method. Uses GGML_TYPE_Q5_K for all tensors |
111
+ | [vicuna-33b.ggmlv3.q5_K_M.bin](https://huggingface.co/TheBloke/vicuna-33B-GGML/blob/main/vicuna-33b.ggmlv3.q5_K_M.bin) | q5_K_M | 5 | 23.05 GB| 25.55 GB | New k-quant method. Uses GGML_TYPE_Q6_K for half of the attention.wv and feed_forward.w2 tensors, else GGML_TYPE_Q5_K |
112
+ | [vicuna-33b.ggmlv3.q5_1.bin](https://huggingface.co/TheBloke/vicuna-33B-GGML/blob/main/vicuna-33b.ggmlv3.q5_1.bin) | q5_1 | 5 | 24.40 GB| 26.90 GB | Original quant method, 5-bit. Even higher accuracy, resource usage and slower inference. |
113
+ | [vicuna-33b.ggmlv3.q6_K.bin](https://huggingface.co/TheBloke/vicuna-33B-GGML/blob/main/vicuna-33b.ggmlv3.q6_K.bin) | q6_K | 6 | 26.69 GB| 29.19 GB | New k-quant method. Uses GGML_TYPE_Q8_K for all tensors - 6-bit quantization |
114
+ | [vicuna-33b.ggmlv3.q8_0.bin](https://huggingface.co/TheBloke/vicuna-33B-GGML/blob/main/vicuna-33b.ggmlv3.q8_0.bin) | q8_0 | 8 | 34.56 GB| 37.06 GB | Original quant method, 8-bit. Almost indistinguishable from float16. High resource use and slow. Not recommended for most users. |
115
 
116
  **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead.
117
 
118
  ## How to run in `llama.cpp`
119
 
120
+ Make sure you are using `llama.cpp` from commit [dadbed99e65252d79f81101a392d0d6497b86caa](https://github.com/ggerganov/llama.cpp/commit/dadbed99e65252d79f81101a392d0d6497b86caa) or earlier.
121
+
122
+ For compatibility with latest llama.cpp, please use GGUF files instead.
123
 
124
  ```
125
+ ./main -t 10 -ngl 32 -m vicuna-33b.ggmlv3.Q4_K_M.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: {prompt} ASSISTANT:"
126
  ```
127
+ Change `-t 10` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`.
 
 
128
 
129
  Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
130
 
131
+ Change `-c 2048` to the desired sequence length for this model. For example, `-c 4096` for a Llama 2 model. For models that use RoPE, add `--rope-freq-base 10000 --rope-freq-scale 0.5` for doubled context, or `--rope-freq-base 10000 --rope-freq-scale 0.25` for 4x context.
132
+
133
  If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
134
 
135
+ For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)
136
+
137
  ## How to run in `text-generation-webui`
138
 
139
+ Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp.md).
140
 
141
  <!-- footer start -->
142
+ <!-- 200823 -->
143
  ## Discord
144
 
145
  For further support, and discussions on these models and AI in general, join us at:
146
 
147
  [TheBloke AI's Discord server](https://discord.gg/theblokeai)
148
 
149
+ ## Thanks, and how to contribute
150
 
151
  Thanks to the [chirper.ai](https://chirper.ai) team!
152
 
153
+ Thanks to Clay from [gpus.llm-utils.org](llm-utils)!
154
+
155
  I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
156
 
157
  If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
 
161
  * Patreon: https://patreon.com/TheBlokeAI
162
  * Ko-Fi: https://ko-fi.com/TheBlokeAI
163
 
164
+ **Special thanks to**: Aemon Algiz.
165
+
166
+ **Patreon special mentions**: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov
167
 
 
168
 
169
  Thank you to all my generous patrons and donaters!
170
 
171
+ And thank you again to a16z for their generous grant.
172
+
173
  <!-- footer end -->
174
 
175
+ # Original model card: LmSys' Vicuna 33B 1.3
176
 
177
 
178
  # Vicuna Model Card
 
200
 
201
  ## How to Get Started with the Model
202
 
203
+ - Command line interface: https://github.com/lm-sys/FastChat#vicuna-weights.
204
+ - APIs (OpenAI API, Huggingface API): https://github.com/lm-sys/FastChat/tree/main#api.
205
 
206
  ## Training Details
207
 
208
  Vicuna v1.3 is fine-tuned from LLaMA with supervised instruction fine-tuning.
209
+ The training data is around 125K conversations collected from ShareGPT.com.
210
  See more details in the "Training Details of Vicuna Models" section in the appendix of this [paper](https://arxiv.org/pdf/2306.05685.pdf).
211
 
212
  ## Evaluation
213
 
214
+ Vicuna is evaluated with standard benchmarks, human preference, and LLM-as-a-judge. See more details in this [paper](https://arxiv.org/pdf/2306.05685.pdf) and [leaderboard](https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard).
215
 
216
  ## Difference between different versions of Vicuna
217
  See [vicuna_weights_version.md](https://github.com/lm-sys/FastChat/blob/main/docs/vicuna_weights_version.md)