--- library_name: transformers license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - wjbmattingly/zulu_merged_audio metrics: - wer model-index: - name: whisper-zulu-medium results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: wjbmattingly/zulu_merged_audio type: wjbmattingly/zulu_merged_audio metrics: - name: Wer type: wer value: 0.1993037098042152 --- # whisper-zulu-medium This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the wjbmattingly/zulu_merged_audio dataset. It achieves the following results on the evaluation set: - Loss: 0.2949 - Wer: 0.1993 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 64 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 400 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.8378 | 1.25 | 100 | 0.7290 | 0.5605 | | 0.3624 | 2.5 | 200 | 0.4048 | 0.2791 | | 0.2279 | 3.75 | 300 | 0.3236 | 0.2187 | | 0.1524 | 5.0 | 400 | 0.2949 | 0.1993 | ### Framework versions - Transformers 4.45.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.21.0 - Tokenizers 0.19.1