File size: 2,314 Bytes
ca135ce
 
 
 
a4cc134
ca135ce
 
a4cc134
 
ca135ce
 
 
 
71fda20
a4cc134
ca135ce
 
 
 
 
 
 
a4cc134
71fda20
a4cc134
ca135ce
 
 
 
 
 
 
 
 
71fda20
 
ca135ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8161f2
71fda20
ca135ce
 
 
 
 
 
 
71fda20
 
 
 
 
 
 
 
 
 
ca135ce
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
---
base_model: facebook/wav2vec2-base
datasets:
- vivos
license: apache-2.0
metrics:
- wer
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-vivos
  results:
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: vivos
      type: vivos
      config: default
      split: None
      args: default
    metrics:
    - type: wer
      value: 0.2342930262316059
      name: Wer
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-vivos

This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the vivos dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4598
- Wer: 0.2343

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.25
- num_epochs: 20
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 6.8271        | 2.0   | 146  | 3.8747          | 1.0    |
| 3.4616        | 4.0   | 292  | 3.5849          | 1.0    |
| 3.35          | 6.0   | 438  | 2.6294          | 0.9997 |
| 1.1993        | 8.0   | 584  | 0.6472          | 0.4255 |
| 0.4734        | 10.0  | 730  | 0.5342          | 0.3258 |
| 0.3156        | 12.0  | 876  | 0.4651          | 0.2758 |
| 0.2392        | 14.0  | 1022 | 0.4690          | 0.2573 |
| 0.2183        | 16.0  | 1168 | 0.4601          | 0.2434 |
| 0.164         | 18.0  | 1314 | 0.4619          | 0.2379 |
| 0.1452        | 20.0  | 1460 | 0.4598          | 0.2343 |


### Framework versions

- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1