--- base_model: facebook/wav2vec2-base datasets: - vivos license: apache-2.0 metrics: - wer tags: - generated_from_trainer model-index: - name: wav2vec2-vivos results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: vivos type: vivos config: default split: None args: default metrics: - type: wer value: 0.2342930262316059 name: Wer --- # wav2vec2-vivos This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the vivos dataset. It achieves the following results on the evaluation set: - Loss: 0.4598 - Wer: 0.2343 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.25 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 6.8271 | 2.0 | 146 | 3.8747 | 1.0 | | 3.4616 | 4.0 | 292 | 3.5849 | 1.0 | | 3.35 | 6.0 | 438 | 2.6294 | 0.9997 | | 1.1993 | 8.0 | 584 | 0.6472 | 0.4255 | | 0.4734 | 10.0 | 730 | 0.5342 | 0.3258 | | 0.3156 | 12.0 | 876 | 0.4651 | 0.2758 | | 0.2392 | 14.0 | 1022 | 0.4690 | 0.2573 | | 0.2183 | 16.0 | 1168 | 0.4601 | 0.2434 | | 0.164 | 18.0 | 1314 | 0.4619 | 0.2379 | | 0.1452 | 20.0 | 1460 | 0.4598 | 0.2343 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1