File size: 2,729 Bytes
784f78b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
---
license: apache-2.0
base_model: facebook/wav2vec2-large
tags:
- generated_from_trainer
datasets:
- audiofolder
metrics:
- accuracy
model-index:
- name: facebook_wav2vec2-large_October_03_2023_05h34PM
  results:
  - task:
      name: Audio Classification
      type: audio-classification
    dataset:
      name: audiofolder
      type: audiofolder
      config: default
      split: validation
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.9743347801471975
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# facebook_wav2vec2-large_October_03_2023_05h34PM

This model is a fine-tuned version of [facebook/wav2vec2-large](https://huggingface.co/facebook/wav2vec2-large) on the audiofolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1318
- Accuracy: 0.9743

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.4214        | 1.0   | 121  | 0.3650          | 0.7932   |
| 0.1959        | 2.0   | 242  | 0.2588          | 0.8960   |
| 0.1365        | 3.0   | 363  | 0.0732          | 0.9713   |
| 0.1003        | 4.0   | 484  | 0.0849          | 0.9719   |
| 0.0806        | 5.0   | 605  | 0.2170          | 0.9381   |
| 0.0588        | 6.0   | 726  | 0.0738          | 0.9760   |
| 0.0472        | 7.0   | 847  | 0.2083          | 0.9409   |
| 0.0505        | 8.0   | 968  | 0.1020          | 0.9760   |
| 0.0427        | 9.0   | 1089 | 0.0626          | 0.9809   |
| 0.0285        | 10.0  | 1210 | 0.1062          | 0.9732   |
| 0.0286        | 11.0  | 1331 | 0.1068          | 0.9738   |
| 0.0231        | 12.0  | 1452 | 0.1137          | 0.9755   |
| 0.0232        | 13.0  | 1573 | 0.0783          | 0.9815   |
| 0.0158        | 14.0  | 1694 | 0.1138          | 0.9755   |
| 0.0164        | 15.0  | 1815 | 0.1318          | 0.9743   |


### Framework versions

- Transformers 4.33.3
- Pytorch 2.2.0.dev20230927+cu121
- Datasets 2.14.5
- Tokenizers 0.13.3