Create gradioapp.py
Browse files- gradioapp.py +45 -0
gradioapp.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import torchaudio
|
4 |
+
from transformers import AutoProcessor, AutoModelForAudioClassification
|
5 |
+
from transformers import AutoFeatureExtractor
|
6 |
+
|
7 |
+
# Load model directly
|
8 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained("ThomasR/facebook_wav2vec2-large_October_03_2023_05h34PM")
|
9 |
+
model = AutoModelForAudioClassification.from_pretrained("ThomasR/facebook_wav2vec2-large_October_03_2023_05h34PM")
|
10 |
+
|
11 |
+
label2id={'fake':0, 'real':1}
|
12 |
+
id2label = {v:k for k,v in label2id.items()}
|
13 |
+
|
14 |
+
def predict(audio_path):
|
15 |
+
wavform, sample_rate = sf.read(audio_path)
|
16 |
+
|
17 |
+
inputs = feature_extractor(
|
18 |
+
wavform, sampling_rate=feature_extractor.sampling_rate, return_tensors="pt", max_length=16000, truncation=True, padding=True
|
19 |
+
)
|
20 |
+
|
21 |
+
with torch.no_grad():
|
22 |
+
logits = model(**inputs).logits
|
23 |
+
|
24 |
+
probabilities = torch.sigmoid(logits[0])
|
25 |
+
# labels is a one-hot array of shape (num_frames, num_speakers)
|
26 |
+
labels = (probabilities > 0.5).long()
|
27 |
+
|
28 |
+
pred_probs = list(probabilities.tolist())
|
29 |
+
# index of the max score
|
30 |
+
idx = pred_probs.index(max(pred_probs))
|
31 |
+
|
32 |
+
LABELS=list(id2label.values())
|
33 |
+
#get labels corresponding to max score
|
34 |
+
max_label = LABELS[idx]
|
35 |
+
results = {LABELS[i]: round(float(pred_probs[i]),4) for i in range(len(LABELS))}
|
36 |
+
|
37 |
+
return results
|
38 |
+
|
39 |
+
demo = gr.Interface(fn=predict,
|
40 |
+
inputs=gr.Audio(type="filepath"),
|
41 |
+
outputs="label",
|
42 |
+
cache_examples=False
|
43 |
+
)
|
44 |
+
|
45 |
+
demo.launch(debug=False)
|