import gradio as gr import torch import torchaudio from transformers import AutoProcessor, AutoModelForAudioClassification from transformers import AutoFeatureExtractor # Load model directly feature_extractor = AutoFeatureExtractor.from_pretrained("ThomasR/facebook_wav2vec2-large_October_03_2023_05h34PM") model = AutoModelForAudioClassification.from_pretrained("ThomasR/facebook_wav2vec2-large_October_03_2023_05h34PM") label2id={'fake':0, 'real':1} id2label = {v:k for k,v in label2id.items()} def predict(audio_path): wavform, sample_rate = sf.read(audio_path) inputs = feature_extractor( wavform, sampling_rate=feature_extractor.sampling_rate, return_tensors="pt", max_length=16000, truncation=True, padding=True ) with torch.no_grad(): logits = model(**inputs).logits probabilities = torch.sigmoid(logits[0]) # labels is a one-hot array of shape (num_frames, num_speakers) labels = (probabilities > 0.5).long() pred_probs = list(probabilities.tolist()) # index of the max score idx = pred_probs.index(max(pred_probs)) LABELS=list(id2label.values()) #get labels corresponding to max score max_label = LABELS[idx] results = {LABELS[i]: round(float(pred_probs[i]),4) for i in range(len(LABELS))} return results demo = gr.Interface(fn=predict, inputs=gr.Audio(type="filepath"), outputs="label", cache_examples=False ) demo.launch(debug=False)