Commit
•
da8e9a1
1
Parent(s):
6420e53
Test commit
Browse files- README.md +31 -1
- config.json +1 -0
- ppo-CartPole-v1.zip +2 -2
- ppo-CartPole-v1/_stable_baselines3_version +1 -0
- ppo-CartPole-v1/data +99 -0
- ppo-CartPole-v1/policy.optimizer.pth +3 -0
- ppo-CartPole-v1/policy.pth +3 -0
- ppo-CartPole-v1/pytorch_variables.pth +3 -0
- ppo-CartPole-v1/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
CHANGED
@@ -1,7 +1,37 @@
|
|
1 |
---
|
|
|
2 |
tags:
|
|
|
3 |
- deep-reinforcement-learning
|
4 |
- reinforcement-learning
|
5 |
- stable-baselines3
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
---
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
library_name: stable-baselines3
|
3 |
tags:
|
4 |
+
- CartPole-v1
|
5 |
- deep-reinforcement-learning
|
6 |
- reinforcement-learning
|
7 |
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: CartPole-v1
|
16 |
+
type: CartPole-v1
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 236.70 +/- 117.42
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **CartPole-v1**
|
25 |
+
This is a trained model of a **PPO** agent playing **CartPole-v1**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f61d9c5e680>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f61d9c5e710>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f61d9c5e7a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f61d9c5e830>", "_build": "<function ActorCriticPolicy._build at 0x7f61d9c5e8c0>", "forward": "<function ActorCriticPolicy.forward at 0x7f61d9c5e950>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f61d9c5e9e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f61d9c5ea70>", "_predict": "<function ActorCriticPolicy._predict at 0x7f61d9c5eb00>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f61d9c5eb90>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f61d9c5ec20>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f61d9c5ecb0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f61e28b3140>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 6144, "_total_timesteps": 5000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1683122612422850293, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVhQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAADR7j70Ai1++quC3PeXblD6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLBIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.2287999999999999, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQDoAAAAAAACMAWyUSxqMAXSUR0AbCIacZtN0dX2UKGgGR0BBgAAAAAAAaAdLI2gIR0AbOoegctGvdX2UKGgGR0A2AAAAAAAAaAdLFmgIR0AbUxL0z0pWdX2UKGgGR0A6AAAAAAAAaAdLGmgIR0Ab5DWsijcmdX2UKGgGR0BIAAAAAAAAaAdLMGgIR0AcchnrY5DJdX2UKGgGR0A5AAAAAAAAaAdLGWgIR0Acsh5gPVd5dX2UKGgGR0A3AAAAAAAAaAdLF2gIR0AdFDlYEGJOdX2UKGgGR0BAgAAAAAAAaAdLIWgIR0AdcFRpDeCTdX2UKGgGR0AsAAAAAAAAaAdLDmgIR0AdkPjGT9sKdX2UKGgGR0BJAAAAAAAAaAdLMmgIR0AeAcebNKRMdX2UKGgGR0AsAAAAAAAAaAdLDmgIR0AePU4JeE7GdX2UKGgGR0AyAAAAAAAAaAdLEmgIR0AeXzCk43m3dX2UKGgGR0AmAAAAAAAAaAdLC2gIR0AedR64UeuFdX2UKGgGR0A3AAAAAAAAaAdLF2gIR0AenH/95yEMdX2UKGgGR0AzAAAAAAAAaAdLE2gIR0AesO4G2TgVdX2UKGgGR0BQAAAAAAAAaAdLQGgIR0AfJPFefI0ZdX2UKGgGR0AqAAAAAAAAaAdLDWgIR0AfM9KVY6n0dX2UKGgGR0BOgAAAAAAAaAdLPWgIR0AfhPM0P6KtdX2UKGgGR0AoAAAAAAAAaAdLDGgIR0Afk9+w1R+CdX2UKGgGR0AyAAAAAAAAaAdLEmgIR0AfxPEbYK6XdX2UKGgGR0BLAAAAAAAAaAdLNmgIR0AgNObAk9lmdX2UKGgGR0A1AAAAAAAAaAdLFWgIR0AgVOSGJvYOdX2UKGgGR0A7AAAAAAAAaAdLG2gIR0AgdPiT+vQodX2UKGgGR0AyAAAAAAAAaAdLEmgIR0AgjnFHavicdX2UKGgGR0AqAAAAAAAAaAdLDWgIR0Agl2/SH/LldX2UKGgGR0A+AAAAAAAAaAdLHmgIR0AgqKa5PM0QdX2UKGgGR0AkAAAAAAAAaAdLCmgIR0AgruKGcnVodX2UKGgGR0AyAAAAAAAAaAdLEmgIR0AgvK0UoKD1dX2UKGgGR0BKAAAAAAAAaAdLNGgIR0Ag2brkbPyDdX2UKGgGR0AqAAAAAAAAaAdLDWgIR0Ag5N21UlzEdX2UKGgGR0AkAAAAAAAAaAdLCmgIR0Ag6oLG7z06dX2UKGgGR0A7AAAAAAAAaAdLG2gIR0AhE2JBPbfxdX2UKGgGR0AyAAAAAAAAaAdLEmgIR0AhI6e5Fw1jdX2UKGgGR0A6AAAAAAAAaAdLGmgIR0AhMaqjrRjSdX2UKGgGR0A1AAAAAAAAaAdLFWgIR0AhPKSxJNCadX2UKGgGR0AqAAAAAAAAaAdLDWgIR0AhQ8+zMRpUdX2UKGgGR0A4AAAAAAAAaAdLGGgIR0AhU0pEx7AtdX2UKGgGR0AzAAAAAAAAaAdLE2gIR0AhXt0FKTStdX2UKGgGR0BEgAAAAAAAaAdLKWgIR0AhbutwJgLJdX2UKGgGR0BAgAAAAAAAaAdLIWgIR0Ahe51/2Cd0dX2UKGgGR0A/AAAAAAAAaAdLH2gIR0AhiK8cuJ1rdX2UKGgGR0BDAAAAAAAAaAdLJmgIR0Ahlv6TGHYZdX2UKGgGR0A0AAAAAAAAaAdLFGgIR0Ahnw9aEBbOdX2UKGgGR0AxAAAAAAAAaAdLEWgIR0AhpdJrcj7idX2UKGgGR0BGgAAAAAAAaAdLLWgIR0AhuBYmsvIwdX2UKGgGR0A/AAAAAAAAaAdLH2gIR0AhxLbpNbkfdX2UKGgGR0BLAAAAAAAAaAdLNmgIR0Ah2SL61stTdX2UKGgGR0AwAAAAAAAAaAdLEGgIR0Ah3zJZGKAKdX2UKGgGR0BAAAAAAAAAaAdLIGgIR0Ah6189fTkRdX2UKGgGR0AwAAAAAAAAaAdLEGgIR0Ah8euFHrhSdX2UKGgGR0A3AAAAAAAAaAdLF2gIR0Ah+xSpBHCodX2UKGgGR0AxAAAAAAAAaAdLEWgIR0AiAYYR/ViGdX2UKGgGR0BTQAAAAAAAaAdLTWgIR0AiHtsvZh8ZdX2UKGgGR0A+AAAAAAAAaAdLHmgIR0AiKoLofSx8dX2UKGgGR0A0AAAAAAAAaAdLFGgIR0AiMfLcKw6idX2UKGgGR0AsAAAAAAAAaAdLDmgIR0AiN0PH1e0HdX2UKGgGR0BGgAAAAAAAaAdLLWgIR0AiR++/QBxQdX2UKGgGR0BHgAAAAAAAaAdLL2gIR0AlirT6SDAadX2UKGgGR0AyAAAAAAAAaAdLEmgIR0AllLg4wRGudX2UKGgGR0A1AAAAAAAAaAdLFWgIR0Aln88cMmWudX2UKGgGR0AxAAAAAAAAaAdLEWgIR0AlqFotcv/SdX2UKGgGR0A7AAAAAAAAaAdLG2gIR0AltdM0xdpqdX2UKGgGR0A6AAAAAAAAaAdLGmgIR0Alw/lhgE2YdX2UKGgGR0A3AAAAAAAAaAdLF2gIR0Al0VTrE9+xdX2UKGgGR0A6AAAAAAAAaAdLGmgIR0Al33TNMXabdX2UKGgGR0BQQAAAAAAAaAdLQWgIR0AmBkuHvc8DdX2UKGgGR0BOgAAAAAAAaAdLPWgIR0AmJeruIAOsdX2UKGgGR0BhAAAAAAAAaAdLiGgIR0AmbTjvNNahdX2UKGgGR0BbgAAAAAAAaAdLbmgIR0AmrDCxeLNwdX2UKGgGR0BJgAAAAAAAaAdLM2gIR0Amyac7QswtdX2UKGgGR0BRAAAAAAAAaAdLRGgIR0Am7WIXTEzgdX2UKGgGR0BQAAAAAAAAaAdLQGgIR0AnEKGcnVoYdX2UKGgGR0BSwAAAAAAAaAdLS2gIR0AnNqRlpXZHdX2UKGgGR0BVAAAAAAAAaAdLVGgIR0AnYC9RJmNBdX2UKGgGR0BDAAAAAAAAaAdLJmgIR0Anc7tAs053dX2UKGgGR0BRQAAAAAAAaAdLRWgIR0AnmNjslb/wdX2UKGgGR0BNAAAAAAAAaAdLOmgIR0AnuPFvQ4S6dX2UKGgGR0BHgAAAAAAAaAdLL2gIR0An1HNorWiDdX2UKGgGR0BTQAAAAAAAaAdLTWgIR0An/w/gR9PUdX2UKGgGR0A0AAAAAAAAaAdLFGgIR0AoCVqN6w+udX2UKGgGR0BaAAAAAAAAaAdLaGgIR0AoP1qWTot+dX2UKGgGR0BIAAAAAAAAaAdLMGgIR0AoWis4ku6FdX2UKGgGR0A+AAAAAAAAaAdLHmgIR0Aoas5n13+udX2UKGgGR0BBAAAAAAAAaAdLImgIR0AogPU8V58jdX2UKGgGR0BYAAAAAAAAaAdLYGgIR0AouMlTm4iHdX2UKGgGR0BKAAAAAAAAaAdLNGgIR0Ao2ShakhzOdX2UKGgGR0AxAAAAAAAAaAdLEWgIR0Ao4rR0EHMVdX2UKGgGR0A6AAAAAAAAaAdLGmgIR0Ao8UzKs+3ZdX2UKGgGR0AoAAAAAAAAaAdLDGgIR0Ao+G21D0DmdX2UKGgGR0AxAAAAAAAAaAdLEWgIR0ApAoDPnjhldX2UKGgGR0AqAAAAAAAAaAdLDWgIR0ApCgVXV9WqdX2UKGgGR0BGgAAAAAAAaAdLLWgIR0ApIgdwNsnBdX2UKGgGR0BYwAAAAAAAaAdLY2gIR0ApT1/Ue+23dX2UKGgGR0A6AAAAAAAAaAdLGmgIR0ApWWepXIU8dX2UKGgGR0BSAAAAAAAAaAdLSGgIR0ApdXBguyu7dX2UKGgGR0A8AAAAAAAAaAdLHGgIR0ApgRcNYr8SdX2UKGgGR0A+AAAAAAAAaAdLHmgIR0ApjTMJQcghdX2UKGgGR0AwAAAAAAAAaAdLEGgIR0Apk67ulXRxdX2UKGgGR0A7AAAAAAAAaAdLG2gIR0ApnW1+iJwbdX2UKGgGR0BEAAAAAAAAaAdLKGgIR0AprAWSEDhcdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 30, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVEAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgQKJYEAAAAAAAAAAEBAQGUaBRLBIWUaBh0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgQKJYQAAAAAAAAAJqZmcD//3//UHfWvv//f/+UaApLBIWUaBh0lFKUjARoaWdolGgQKJYQAAAAAAAAAJqZmUD//39/UHfWPv//f3+UaApLBIWUaBh0lFKUjAhsb3dfcmVwcpSMPVstNC44MDAwMDAyZSswMCAtMy40MDI4MjM1ZSszOCAtNC4xODg3OTAzZS0wMSAtMy40MDI4MjM1ZSszOF2UjAloaWdoX3JlcHKUjDlbNC44MDAwMDAyZSswMCAzLjQwMjgyMzVlKzM4IDQuMTg4NzkwM2UtMDEgMy40MDI4MjM1ZSszOF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]", "high": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]", "low_repr": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]", "high_repr": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAgAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "2", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a6", "PyTorch": "2.0.0+cu118", "GPU Enabled": "False", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-CartPole-v1.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9cc86c53165b4e422fbda20501d94b199a979f242423825659f28dbab38b9a6f
|
3 |
+
size 137445
|
ppo-CartPole-v1/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a6
|
ppo-CartPole-v1/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f61d9c5e680>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f61d9c5e710>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f61d9c5e7a0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f61d9c5e830>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f61d9c5e8c0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f61d9c5e950>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f61d9c5e9e0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f61d9c5ea70>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f61d9c5eb00>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f61d9c5eb90>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f61d9c5ec20>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f61d9c5ecb0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f61e28b3140>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 6144,
|
25 |
+
"_total_timesteps": 5000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1683122612422850293,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVhQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAADR7j70Ai1++quC3PeXblD6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLBIaUjAFDlHSUUpQu"
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.2287999999999999,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQDoAAAAAAACMAWyUSxqMAXSUR0AbCIacZtN0dX2UKGgGR0BBgAAAAAAAaAdLI2gIR0AbOoegctGvdX2UKGgGR0A2AAAAAAAAaAdLFmgIR0AbUxL0z0pWdX2UKGgGR0A6AAAAAAAAaAdLGmgIR0Ab5DWsijcmdX2UKGgGR0BIAAAAAAAAaAdLMGgIR0AcchnrY5DJdX2UKGgGR0A5AAAAAAAAaAdLGWgIR0Acsh5gPVd5dX2UKGgGR0A3AAAAAAAAaAdLF2gIR0AdFDlYEGJOdX2UKGgGR0BAgAAAAAAAaAdLIWgIR0AdcFRpDeCTdX2UKGgGR0AsAAAAAAAAaAdLDmgIR0AdkPjGT9sKdX2UKGgGR0BJAAAAAAAAaAdLMmgIR0AeAcebNKRMdX2UKGgGR0AsAAAAAAAAaAdLDmgIR0AePU4JeE7GdX2UKGgGR0AyAAAAAAAAaAdLEmgIR0AeXzCk43m3dX2UKGgGR0AmAAAAAAAAaAdLC2gIR0AedR64UeuFdX2UKGgGR0A3AAAAAAAAaAdLF2gIR0AenH/95yEMdX2UKGgGR0AzAAAAAAAAaAdLE2gIR0AesO4G2TgVdX2UKGgGR0BQAAAAAAAAaAdLQGgIR0AfJPFefI0ZdX2UKGgGR0AqAAAAAAAAaAdLDWgIR0AfM9KVY6n0dX2UKGgGR0BOgAAAAAAAaAdLPWgIR0AfhPM0P6KtdX2UKGgGR0AoAAAAAAAAaAdLDGgIR0Afk9+w1R+CdX2UKGgGR0AyAAAAAAAAaAdLEmgIR0AfxPEbYK6XdX2UKGgGR0BLAAAAAAAAaAdLNmgIR0AgNObAk9lmdX2UKGgGR0A1AAAAAAAAaAdLFWgIR0AgVOSGJvYOdX2UKGgGR0A7AAAAAAAAaAdLG2gIR0AgdPiT+vQodX2UKGgGR0AyAAAAAAAAaAdLEmgIR0AgjnFHavicdX2UKGgGR0AqAAAAAAAAaAdLDWgIR0Agl2/SH/LldX2UKGgGR0A+AAAAAAAAaAdLHmgIR0AgqKa5PM0QdX2UKGgGR0AkAAAAAAAAaAdLCmgIR0AgruKGcnVodX2UKGgGR0AyAAAAAAAAaAdLEmgIR0AgvK0UoKD1dX2UKGgGR0BKAAAAAAAAaAdLNGgIR0Ag2brkbPyDdX2UKGgGR0AqAAAAAAAAaAdLDWgIR0Ag5N21UlzEdX2UKGgGR0AkAAAAAAAAaAdLCmgIR0Ag6oLG7z06dX2UKGgGR0A7AAAAAAAAaAdLG2gIR0AhE2JBPbfxdX2UKGgGR0AyAAAAAAAAaAdLEmgIR0AhI6e5Fw1jdX2UKGgGR0A6AAAAAAAAaAdLGmgIR0AhMaqjrRjSdX2UKGgGR0A1AAAAAAAAaAdLFWgIR0AhPKSxJNCadX2UKGgGR0AqAAAAAAAAaAdLDWgIR0AhQ8+zMRpUdX2UKGgGR0A4AAAAAAAAaAdLGGgIR0AhU0pEx7AtdX2UKGgGR0AzAAAAAAAAaAdLE2gIR0AhXt0FKTStdX2UKGgGR0BEgAAAAAAAaAdLKWgIR0AhbutwJgLJdX2UKGgGR0BAgAAAAAAAaAdLIWgIR0Ahe51/2Cd0dX2UKGgGR0A/AAAAAAAAaAdLH2gIR0AhiK8cuJ1rdX2UKGgGR0BDAAAAAAAAaAdLJmgIR0Ahlv6TGHYZdX2UKGgGR0A0AAAAAAAAaAdLFGgIR0Ahnw9aEBbOdX2UKGgGR0AxAAAAAAAAaAdLEWgIR0AhpdJrcj7idX2UKGgGR0BGgAAAAAAAaAdLLWgIR0AhuBYmsvIwdX2UKGgGR0A/AAAAAAAAaAdLH2gIR0AhxLbpNbkfdX2UKGgGR0BLAAAAAAAAaAdLNmgIR0Ah2SL61stTdX2UKGgGR0AwAAAAAAAAaAdLEGgIR0Ah3zJZGKAKdX2UKGgGR0BAAAAAAAAAaAdLIGgIR0Ah6189fTkRdX2UKGgGR0AwAAAAAAAAaAdLEGgIR0Ah8euFHrhSdX2UKGgGR0A3AAAAAAAAaAdLF2gIR0Ah+xSpBHCodX2UKGgGR0AxAAAAAAAAaAdLEWgIR0AiAYYR/ViGdX2UKGgGR0BTQAAAAAAAaAdLTWgIR0AiHtsvZh8ZdX2UKGgGR0A+AAAAAAAAaAdLHmgIR0AiKoLofSx8dX2UKGgGR0A0AAAAAAAAaAdLFGgIR0AiMfLcKw6idX2UKGgGR0AsAAAAAAAAaAdLDmgIR0AiN0PH1e0HdX2UKGgGR0BGgAAAAAAAaAdLLWgIR0AiR++/QBxQdX2UKGgGR0BHgAAAAAAAaAdLL2gIR0AlirT6SDAadX2UKGgGR0AyAAAAAAAAaAdLEmgIR0AllLg4wRGudX2UKGgGR0A1AAAAAAAAaAdLFWgIR0Aln88cMmWudX2UKGgGR0AxAAAAAAAAaAdLEWgIR0AlqFotcv/SdX2UKGgGR0A7AAAAAAAAaAdLG2gIR0AltdM0xdpqdX2UKGgGR0A6AAAAAAAAaAdLGmgIR0Alw/lhgE2YdX2UKGgGR0A3AAAAAAAAaAdLF2gIR0Al0VTrE9+xdX2UKGgGR0A6AAAAAAAAaAdLGmgIR0Al33TNMXabdX2UKGgGR0BQQAAAAAAAaAdLQWgIR0AmBkuHvc8DdX2UKGgGR0BOgAAAAAAAaAdLPWgIR0AmJeruIAOsdX2UKGgGR0BhAAAAAAAAaAdLiGgIR0AmbTjvNNahdX2UKGgGR0BbgAAAAAAAaAdLbmgIR0AmrDCxeLNwdX2UKGgGR0BJgAAAAAAAaAdLM2gIR0Amyac7QswtdX2UKGgGR0BRAAAAAAAAaAdLRGgIR0Am7WIXTEzgdX2UKGgGR0BQAAAAAAAAaAdLQGgIR0AnEKGcnVoYdX2UKGgGR0BSwAAAAAAAaAdLS2gIR0AnNqRlpXZHdX2UKGgGR0BVAAAAAAAAaAdLVGgIR0AnYC9RJmNBdX2UKGgGR0BDAAAAAAAAaAdLJmgIR0Anc7tAs053dX2UKGgGR0BRQAAAAAAAaAdLRWgIR0AnmNjslb/wdX2UKGgGR0BNAAAAAAAAaAdLOmgIR0AnuPFvQ4S6dX2UKGgGR0BHgAAAAAAAaAdLL2gIR0An1HNorWiDdX2UKGgGR0BTQAAAAAAAaAdLTWgIR0An/w/gR9PUdX2UKGgGR0A0AAAAAAAAaAdLFGgIR0AoCVqN6w+udX2UKGgGR0BaAAAAAAAAaAdLaGgIR0AoP1qWTot+dX2UKGgGR0BIAAAAAAAAaAdLMGgIR0AoWis4ku6FdX2UKGgGR0A+AAAAAAAAaAdLHmgIR0Aoas5n13+udX2UKGgGR0BBAAAAAAAAaAdLImgIR0AogPU8V58jdX2UKGgGR0BYAAAAAAAAaAdLYGgIR0AouMlTm4iHdX2UKGgGR0BKAAAAAAAAaAdLNGgIR0Ao2ShakhzOdX2UKGgGR0AxAAAAAAAAaAdLEWgIR0Ao4rR0EHMVdX2UKGgGR0A6AAAAAAAAaAdLGmgIR0Ao8UzKs+3ZdX2UKGgGR0AoAAAAAAAAaAdLDGgIR0Ao+G21D0DmdX2UKGgGR0AxAAAAAAAAaAdLEWgIR0ApAoDPnjhldX2UKGgGR0AqAAAAAAAAaAdLDWgIR0ApCgVXV9WqdX2UKGgGR0BGgAAAAAAAaAdLLWgIR0ApIgdwNsnBdX2UKGgGR0BYwAAAAAAAaAdLY2gIR0ApT1/Ue+23dX2UKGgGR0A6AAAAAAAAaAdLGmgIR0ApWWepXIU8dX2UKGgGR0BSAAAAAAAAaAdLSGgIR0ApdXBguyu7dX2UKGgGR0A8AAAAAAAAaAdLHGgIR0ApgRcNYr8SdX2UKGgGR0A+AAAAAAAAaAdLHmgIR0ApjTMJQcghdX2UKGgGR0AwAAAAAAAAaAdLEGgIR0Apk67ulXRxdX2UKGgGR0A7AAAAAAAAaAdLG2gIR0ApnW1+iJwbdX2UKGgGR0BEAAAAAAAAaAdLKGgIR0AprAWSEDhcdWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 30,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVEAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgQKJYEAAAAAAAAAAEBAQGUaBRLBIWUaBh0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgQKJYQAAAAAAAAAJqZmcD//3//UHfWvv//f/+UaApLBIWUaBh0lFKUjARoaWdolGgQKJYQAAAAAAAAAJqZmUD//39/UHfWPv//f3+UaApLBIWUaBh0lFKUjAhsb3dfcmVwcpSMPVstNC44MDAwMDAyZSswMCAtMy40MDI4MjM1ZSszOCAtNC4xODg3OTAzZS0wMSAtMy40MDI4MjM1ZSszOF2UjAloaWdoX3JlcHKUjDlbNC44MDAwMDAyZSswMCAzLjQwMjgyMzVlKzM4IDQuMTg4NzkwM2UtMDEgMy40MDI4MjM1ZSszOF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True]",
|
60 |
+
"bounded_above": "[ True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
4
|
63 |
+
],
|
64 |
+
"low": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]",
|
65 |
+
"high": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]",
|
66 |
+
"low_repr": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]",
|
67 |
+
"high_repr": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAgAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "2",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 1,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.99,
|
82 |
+
"gae_lambda": 0.95,
|
83 |
+
"ent_coef": 0.0,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 10,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-CartPole-v1/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:69d084f60da71cb6b3fdc757dfa5f4fb61a6c91d65373f92406dd0a6198f9c6e
|
3 |
+
size 82425
|
ppo-CartPole-v1/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cf7251ea048c61788d3a9edf6614196b11c9383d5f8993620bcd83e113621426
|
3 |
+
size 40641
|
ppo-CartPole-v1/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-CartPole-v1/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.10.11
|
3 |
+
- Stable-Baselines3: 2.0.0a6
|
4 |
+
- PyTorch: 2.0.0+cu118
|
5 |
+
- GPU Enabled: False
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (61.6 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 236.7, "std_reward": 117.42065406051866, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-03T14:03:47.891422"}
|