ThomasSimonini HF staff commited on
Commit
da8e9a1
1 Parent(s): 6420e53

Test commit

Browse files
README.md CHANGED
@@ -1,7 +1,37 @@
1
  ---
 
2
  tags:
 
3
  - deep-reinforcement-learning
4
  - reinforcement-learning
5
  - stable-baselines3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
  ---
7
- # TODO: Fill this model card
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ library_name: stable-baselines3
3
  tags:
4
+ - CartPole-v1
5
  - deep-reinforcement-learning
6
  - reinforcement-learning
7
  - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: CartPole-v1
16
+ type: CartPole-v1
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 236.70 +/- 117.42
20
+ name: mean_reward
21
+ verified: false
22
  ---
23
+
24
+ # **PPO** Agent playing **CartPole-v1**
25
+ This is a trained model of a **PPO** agent playing **CartPole-v1**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f61d9c5e680>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f61d9c5e710>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f61d9c5e7a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f61d9c5e830>", "_build": "<function ActorCriticPolicy._build at 0x7f61d9c5e8c0>", "forward": "<function ActorCriticPolicy.forward at 0x7f61d9c5e950>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f61d9c5e9e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f61d9c5ea70>", "_predict": "<function ActorCriticPolicy._predict at 0x7f61d9c5eb00>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f61d9c5eb90>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f61d9c5ec20>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f61d9c5ecb0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f61e28b3140>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 6144, "_total_timesteps": 5000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1683122612422850293, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVhQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAADR7j70Ai1++quC3PeXblD6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLBIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.2287999999999999, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQDoAAAAAAACMAWyUSxqMAXSUR0AbCIacZtN0dX2UKGgGR0BBgAAAAAAAaAdLI2gIR0AbOoegctGvdX2UKGgGR0A2AAAAAAAAaAdLFmgIR0AbUxL0z0pWdX2UKGgGR0A6AAAAAAAAaAdLGmgIR0Ab5DWsijcmdX2UKGgGR0BIAAAAAAAAaAdLMGgIR0AcchnrY5DJdX2UKGgGR0A5AAAAAAAAaAdLGWgIR0Acsh5gPVd5dX2UKGgGR0A3AAAAAAAAaAdLF2gIR0AdFDlYEGJOdX2UKGgGR0BAgAAAAAAAaAdLIWgIR0AdcFRpDeCTdX2UKGgGR0AsAAAAAAAAaAdLDmgIR0AdkPjGT9sKdX2UKGgGR0BJAAAAAAAAaAdLMmgIR0AeAcebNKRMdX2UKGgGR0AsAAAAAAAAaAdLDmgIR0AePU4JeE7GdX2UKGgGR0AyAAAAAAAAaAdLEmgIR0AeXzCk43m3dX2UKGgGR0AmAAAAAAAAaAdLC2gIR0AedR64UeuFdX2UKGgGR0A3AAAAAAAAaAdLF2gIR0AenH/95yEMdX2UKGgGR0AzAAAAAAAAaAdLE2gIR0AesO4G2TgVdX2UKGgGR0BQAAAAAAAAaAdLQGgIR0AfJPFefI0ZdX2UKGgGR0AqAAAAAAAAaAdLDWgIR0AfM9KVY6n0dX2UKGgGR0BOgAAAAAAAaAdLPWgIR0AfhPM0P6KtdX2UKGgGR0AoAAAAAAAAaAdLDGgIR0Afk9+w1R+CdX2UKGgGR0AyAAAAAAAAaAdLEmgIR0AfxPEbYK6XdX2UKGgGR0BLAAAAAAAAaAdLNmgIR0AgNObAk9lmdX2UKGgGR0A1AAAAAAAAaAdLFWgIR0AgVOSGJvYOdX2UKGgGR0A7AAAAAAAAaAdLG2gIR0AgdPiT+vQodX2UKGgGR0AyAAAAAAAAaAdLEmgIR0AgjnFHavicdX2UKGgGR0AqAAAAAAAAaAdLDWgIR0Agl2/SH/LldX2UKGgGR0A+AAAAAAAAaAdLHmgIR0AgqKa5PM0QdX2UKGgGR0AkAAAAAAAAaAdLCmgIR0AgruKGcnVodX2UKGgGR0AyAAAAAAAAaAdLEmgIR0AgvK0UoKD1dX2UKGgGR0BKAAAAAAAAaAdLNGgIR0Ag2brkbPyDdX2UKGgGR0AqAAAAAAAAaAdLDWgIR0Ag5N21UlzEdX2UKGgGR0AkAAAAAAAAaAdLCmgIR0Ag6oLG7z06dX2UKGgGR0A7AAAAAAAAaAdLG2gIR0AhE2JBPbfxdX2UKGgGR0AyAAAAAAAAaAdLEmgIR0AhI6e5Fw1jdX2UKGgGR0A6AAAAAAAAaAdLGmgIR0AhMaqjrRjSdX2UKGgGR0A1AAAAAAAAaAdLFWgIR0AhPKSxJNCadX2UKGgGR0AqAAAAAAAAaAdLDWgIR0AhQ8+zMRpUdX2UKGgGR0A4AAAAAAAAaAdLGGgIR0AhU0pEx7AtdX2UKGgGR0AzAAAAAAAAaAdLE2gIR0AhXt0FKTStdX2UKGgGR0BEgAAAAAAAaAdLKWgIR0AhbutwJgLJdX2UKGgGR0BAgAAAAAAAaAdLIWgIR0Ahe51/2Cd0dX2UKGgGR0A/AAAAAAAAaAdLH2gIR0AhiK8cuJ1rdX2UKGgGR0BDAAAAAAAAaAdLJmgIR0Ahlv6TGHYZdX2UKGgGR0A0AAAAAAAAaAdLFGgIR0Ahnw9aEBbOdX2UKGgGR0AxAAAAAAAAaAdLEWgIR0AhpdJrcj7idX2UKGgGR0BGgAAAAAAAaAdLLWgIR0AhuBYmsvIwdX2UKGgGR0A/AAAAAAAAaAdLH2gIR0AhxLbpNbkfdX2UKGgGR0BLAAAAAAAAaAdLNmgIR0Ah2SL61stTdX2UKGgGR0AwAAAAAAAAaAdLEGgIR0Ah3zJZGKAKdX2UKGgGR0BAAAAAAAAAaAdLIGgIR0Ah6189fTkRdX2UKGgGR0AwAAAAAAAAaAdLEGgIR0Ah8euFHrhSdX2UKGgGR0A3AAAAAAAAaAdLF2gIR0Ah+xSpBHCodX2UKGgGR0AxAAAAAAAAaAdLEWgIR0AiAYYR/ViGdX2UKGgGR0BTQAAAAAAAaAdLTWgIR0AiHtsvZh8ZdX2UKGgGR0A+AAAAAAAAaAdLHmgIR0AiKoLofSx8dX2UKGgGR0A0AAAAAAAAaAdLFGgIR0AiMfLcKw6idX2UKGgGR0AsAAAAAAAAaAdLDmgIR0AiN0PH1e0HdX2UKGgGR0BGgAAAAAAAaAdLLWgIR0AiR++/QBxQdX2UKGgGR0BHgAAAAAAAaAdLL2gIR0AlirT6SDAadX2UKGgGR0AyAAAAAAAAaAdLEmgIR0AllLg4wRGudX2UKGgGR0A1AAAAAAAAaAdLFWgIR0Aln88cMmWudX2UKGgGR0AxAAAAAAAAaAdLEWgIR0AlqFotcv/SdX2UKGgGR0A7AAAAAAAAaAdLG2gIR0AltdM0xdpqdX2UKGgGR0A6AAAAAAAAaAdLGmgIR0Alw/lhgE2YdX2UKGgGR0A3AAAAAAAAaAdLF2gIR0Al0VTrE9+xdX2UKGgGR0A6AAAAAAAAaAdLGmgIR0Al33TNMXabdX2UKGgGR0BQQAAAAAAAaAdLQWgIR0AmBkuHvc8DdX2UKGgGR0BOgAAAAAAAaAdLPWgIR0AmJeruIAOsdX2UKGgGR0BhAAAAAAAAaAdLiGgIR0AmbTjvNNahdX2UKGgGR0BbgAAAAAAAaAdLbmgIR0AmrDCxeLNwdX2UKGgGR0BJgAAAAAAAaAdLM2gIR0Amyac7QswtdX2UKGgGR0BRAAAAAAAAaAdLRGgIR0Am7WIXTEzgdX2UKGgGR0BQAAAAAAAAaAdLQGgIR0AnEKGcnVoYdX2UKGgGR0BSwAAAAAAAaAdLS2gIR0AnNqRlpXZHdX2UKGgGR0BVAAAAAAAAaAdLVGgIR0AnYC9RJmNBdX2UKGgGR0BDAAAAAAAAaAdLJmgIR0Anc7tAs053dX2UKGgGR0BRQAAAAAAAaAdLRWgIR0AnmNjslb/wdX2UKGgGR0BNAAAAAAAAaAdLOmgIR0AnuPFvQ4S6dX2UKGgGR0BHgAAAAAAAaAdLL2gIR0An1HNorWiDdX2UKGgGR0BTQAAAAAAAaAdLTWgIR0An/w/gR9PUdX2UKGgGR0A0AAAAAAAAaAdLFGgIR0AoCVqN6w+udX2UKGgGR0BaAAAAAAAAaAdLaGgIR0AoP1qWTot+dX2UKGgGR0BIAAAAAAAAaAdLMGgIR0AoWis4ku6FdX2UKGgGR0A+AAAAAAAAaAdLHmgIR0Aoas5n13+udX2UKGgGR0BBAAAAAAAAaAdLImgIR0AogPU8V58jdX2UKGgGR0BYAAAAAAAAaAdLYGgIR0AouMlTm4iHdX2UKGgGR0BKAAAAAAAAaAdLNGgIR0Ao2ShakhzOdX2UKGgGR0AxAAAAAAAAaAdLEWgIR0Ao4rR0EHMVdX2UKGgGR0A6AAAAAAAAaAdLGmgIR0Ao8UzKs+3ZdX2UKGgGR0AoAAAAAAAAaAdLDGgIR0Ao+G21D0DmdX2UKGgGR0AxAAAAAAAAaAdLEWgIR0ApAoDPnjhldX2UKGgGR0AqAAAAAAAAaAdLDWgIR0ApCgVXV9WqdX2UKGgGR0BGgAAAAAAAaAdLLWgIR0ApIgdwNsnBdX2UKGgGR0BYwAAAAAAAaAdLY2gIR0ApT1/Ue+23dX2UKGgGR0A6AAAAAAAAaAdLGmgIR0ApWWepXIU8dX2UKGgGR0BSAAAAAAAAaAdLSGgIR0ApdXBguyu7dX2UKGgGR0A8AAAAAAAAaAdLHGgIR0ApgRcNYr8SdX2UKGgGR0A+AAAAAAAAaAdLHmgIR0ApjTMJQcghdX2UKGgGR0AwAAAAAAAAaAdLEGgIR0Apk67ulXRxdX2UKGgGR0A7AAAAAAAAaAdLG2gIR0ApnW1+iJwbdX2UKGgGR0BEAAAAAAAAaAdLKGgIR0AprAWSEDhcdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 30, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVEAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgQKJYEAAAAAAAAAAEBAQGUaBRLBIWUaBh0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgQKJYQAAAAAAAAAJqZmcD//3//UHfWvv//f/+UaApLBIWUaBh0lFKUjARoaWdolGgQKJYQAAAAAAAAAJqZmUD//39/UHfWPv//f3+UaApLBIWUaBh0lFKUjAhsb3dfcmVwcpSMPVstNC44MDAwMDAyZSswMCAtMy40MDI4MjM1ZSszOCAtNC4xODg3OTAzZS0wMSAtMy40MDI4MjM1ZSszOF2UjAloaWdoX3JlcHKUjDlbNC44MDAwMDAyZSswMCAzLjQwMjgyMzVlKzM4IDQuMTg4NzkwM2UtMDEgMy40MDI4MjM1ZSszOF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]", "high": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]", "low_repr": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]", "high_repr": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAgAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "2", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a6", "PyTorch": "2.0.0+cu118", "GPU Enabled": "False", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-CartPole-v1.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:9befdaf5eee0cabaacbf288a719998b864502ce62982084c4afcd4dca64e4ac0
3
- size 133291
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9cc86c53165b4e422fbda20501d94b199a979f242423825659f28dbab38b9a6f
3
+ size 137445
ppo-CartPole-v1/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a6
ppo-CartPole-v1/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f61d9c5e680>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f61d9c5e710>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f61d9c5e7a0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f61d9c5e830>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f61d9c5e8c0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f61d9c5e950>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f61d9c5e9e0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f61d9c5ea70>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f61d9c5eb00>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f61d9c5eb90>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f61d9c5ec20>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f61d9c5ecb0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f61e28b3140>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 6144,
25
+ "_total_timesteps": 5000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1683122612422850293,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVhQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAADR7j70Ai1++quC3PeXblD6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLBIaUjAFDlHSUUpQu"
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.2287999999999999,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQDoAAAAAAACMAWyUSxqMAXSUR0AbCIacZtN0dX2UKGgGR0BBgAAAAAAAaAdLI2gIR0AbOoegctGvdX2UKGgGR0A2AAAAAAAAaAdLFmgIR0AbUxL0z0pWdX2UKGgGR0A6AAAAAAAAaAdLGmgIR0Ab5DWsijcmdX2UKGgGR0BIAAAAAAAAaAdLMGgIR0AcchnrY5DJdX2UKGgGR0A5AAAAAAAAaAdLGWgIR0Acsh5gPVd5dX2UKGgGR0A3AAAAAAAAaAdLF2gIR0AdFDlYEGJOdX2UKGgGR0BAgAAAAAAAaAdLIWgIR0AdcFRpDeCTdX2UKGgGR0AsAAAAAAAAaAdLDmgIR0AdkPjGT9sKdX2UKGgGR0BJAAAAAAAAaAdLMmgIR0AeAcebNKRMdX2UKGgGR0AsAAAAAAAAaAdLDmgIR0AePU4JeE7GdX2UKGgGR0AyAAAAAAAAaAdLEmgIR0AeXzCk43m3dX2UKGgGR0AmAAAAAAAAaAdLC2gIR0AedR64UeuFdX2UKGgGR0A3AAAAAAAAaAdLF2gIR0AenH/95yEMdX2UKGgGR0AzAAAAAAAAaAdLE2gIR0AesO4G2TgVdX2UKGgGR0BQAAAAAAAAaAdLQGgIR0AfJPFefI0ZdX2UKGgGR0AqAAAAAAAAaAdLDWgIR0AfM9KVY6n0dX2UKGgGR0BOgAAAAAAAaAdLPWgIR0AfhPM0P6KtdX2UKGgGR0AoAAAAAAAAaAdLDGgIR0Afk9+w1R+CdX2UKGgGR0AyAAAAAAAAaAdLEmgIR0AfxPEbYK6XdX2UKGgGR0BLAAAAAAAAaAdLNmgIR0AgNObAk9lmdX2UKGgGR0A1AAAAAAAAaAdLFWgIR0AgVOSGJvYOdX2UKGgGR0A7AAAAAAAAaAdLG2gIR0AgdPiT+vQodX2UKGgGR0AyAAAAAAAAaAdLEmgIR0AgjnFHavicdX2UKGgGR0AqAAAAAAAAaAdLDWgIR0Agl2/SH/LldX2UKGgGR0A+AAAAAAAAaAdLHmgIR0AgqKa5PM0QdX2UKGgGR0AkAAAAAAAAaAdLCmgIR0AgruKGcnVodX2UKGgGR0AyAAAAAAAAaAdLEmgIR0AgvK0UoKD1dX2UKGgGR0BKAAAAAAAAaAdLNGgIR0Ag2brkbPyDdX2UKGgGR0AqAAAAAAAAaAdLDWgIR0Ag5N21UlzEdX2UKGgGR0AkAAAAAAAAaAdLCmgIR0Ag6oLG7z06dX2UKGgGR0A7AAAAAAAAaAdLG2gIR0AhE2JBPbfxdX2UKGgGR0AyAAAAAAAAaAdLEmgIR0AhI6e5Fw1jdX2UKGgGR0A6AAAAAAAAaAdLGmgIR0AhMaqjrRjSdX2UKGgGR0A1AAAAAAAAaAdLFWgIR0AhPKSxJNCadX2UKGgGR0AqAAAAAAAAaAdLDWgIR0AhQ8+zMRpUdX2UKGgGR0A4AAAAAAAAaAdLGGgIR0AhU0pEx7AtdX2UKGgGR0AzAAAAAAAAaAdLE2gIR0AhXt0FKTStdX2UKGgGR0BEgAAAAAAAaAdLKWgIR0AhbutwJgLJdX2UKGgGR0BAgAAAAAAAaAdLIWgIR0Ahe51/2Cd0dX2UKGgGR0A/AAAAAAAAaAdLH2gIR0AhiK8cuJ1rdX2UKGgGR0BDAAAAAAAAaAdLJmgIR0Ahlv6TGHYZdX2UKGgGR0A0AAAAAAAAaAdLFGgIR0Ahnw9aEBbOdX2UKGgGR0AxAAAAAAAAaAdLEWgIR0AhpdJrcj7idX2UKGgGR0BGgAAAAAAAaAdLLWgIR0AhuBYmsvIwdX2UKGgGR0A/AAAAAAAAaAdLH2gIR0AhxLbpNbkfdX2UKGgGR0BLAAAAAAAAaAdLNmgIR0Ah2SL61stTdX2UKGgGR0AwAAAAAAAAaAdLEGgIR0Ah3zJZGKAKdX2UKGgGR0BAAAAAAAAAaAdLIGgIR0Ah6189fTkRdX2UKGgGR0AwAAAAAAAAaAdLEGgIR0Ah8euFHrhSdX2UKGgGR0A3AAAAAAAAaAdLF2gIR0Ah+xSpBHCodX2UKGgGR0AxAAAAAAAAaAdLEWgIR0AiAYYR/ViGdX2UKGgGR0BTQAAAAAAAaAdLTWgIR0AiHtsvZh8ZdX2UKGgGR0A+AAAAAAAAaAdLHmgIR0AiKoLofSx8dX2UKGgGR0A0AAAAAAAAaAdLFGgIR0AiMfLcKw6idX2UKGgGR0AsAAAAAAAAaAdLDmgIR0AiN0PH1e0HdX2UKGgGR0BGgAAAAAAAaAdLLWgIR0AiR++/QBxQdX2UKGgGR0BHgAAAAAAAaAdLL2gIR0AlirT6SDAadX2UKGgGR0AyAAAAAAAAaAdLEmgIR0AllLg4wRGudX2UKGgGR0A1AAAAAAAAaAdLFWgIR0Aln88cMmWudX2UKGgGR0AxAAAAAAAAaAdLEWgIR0AlqFotcv/SdX2UKGgGR0A7AAAAAAAAaAdLG2gIR0AltdM0xdpqdX2UKGgGR0A6AAAAAAAAaAdLGmgIR0Alw/lhgE2YdX2UKGgGR0A3AAAAAAAAaAdLF2gIR0Al0VTrE9+xdX2UKGgGR0A6AAAAAAAAaAdLGmgIR0Al33TNMXabdX2UKGgGR0BQQAAAAAAAaAdLQWgIR0AmBkuHvc8DdX2UKGgGR0BOgAAAAAAAaAdLPWgIR0AmJeruIAOsdX2UKGgGR0BhAAAAAAAAaAdLiGgIR0AmbTjvNNahdX2UKGgGR0BbgAAAAAAAaAdLbmgIR0AmrDCxeLNwdX2UKGgGR0BJgAAAAAAAaAdLM2gIR0Amyac7QswtdX2UKGgGR0BRAAAAAAAAaAdLRGgIR0Am7WIXTEzgdX2UKGgGR0BQAAAAAAAAaAdLQGgIR0AnEKGcnVoYdX2UKGgGR0BSwAAAAAAAaAdLS2gIR0AnNqRlpXZHdX2UKGgGR0BVAAAAAAAAaAdLVGgIR0AnYC9RJmNBdX2UKGgGR0BDAAAAAAAAaAdLJmgIR0Anc7tAs053dX2UKGgGR0BRQAAAAAAAaAdLRWgIR0AnmNjslb/wdX2UKGgGR0BNAAAAAAAAaAdLOmgIR0AnuPFvQ4S6dX2UKGgGR0BHgAAAAAAAaAdLL2gIR0An1HNorWiDdX2UKGgGR0BTQAAAAAAAaAdLTWgIR0An/w/gR9PUdX2UKGgGR0A0AAAAAAAAaAdLFGgIR0AoCVqN6w+udX2UKGgGR0BaAAAAAAAAaAdLaGgIR0AoP1qWTot+dX2UKGgGR0BIAAAAAAAAaAdLMGgIR0AoWis4ku6FdX2UKGgGR0A+AAAAAAAAaAdLHmgIR0Aoas5n13+udX2UKGgGR0BBAAAAAAAAaAdLImgIR0AogPU8V58jdX2UKGgGR0BYAAAAAAAAaAdLYGgIR0AouMlTm4iHdX2UKGgGR0BKAAAAAAAAaAdLNGgIR0Ao2ShakhzOdX2UKGgGR0AxAAAAAAAAaAdLEWgIR0Ao4rR0EHMVdX2UKGgGR0A6AAAAAAAAaAdLGmgIR0Ao8UzKs+3ZdX2UKGgGR0AoAAAAAAAAaAdLDGgIR0Ao+G21D0DmdX2UKGgGR0AxAAAAAAAAaAdLEWgIR0ApAoDPnjhldX2UKGgGR0AqAAAAAAAAaAdLDWgIR0ApCgVXV9WqdX2UKGgGR0BGgAAAAAAAaAdLLWgIR0ApIgdwNsnBdX2UKGgGR0BYwAAAAAAAaAdLY2gIR0ApT1/Ue+23dX2UKGgGR0A6AAAAAAAAaAdLGmgIR0ApWWepXIU8dX2UKGgGR0BSAAAAAAAAaAdLSGgIR0ApdXBguyu7dX2UKGgGR0A8AAAAAAAAaAdLHGgIR0ApgRcNYr8SdX2UKGgGR0A+AAAAAAAAaAdLHmgIR0ApjTMJQcghdX2UKGgGR0AwAAAAAAAAaAdLEGgIR0Apk67ulXRxdX2UKGgGR0A7AAAAAAAAaAdLG2gIR0ApnW1+iJwbdX2UKGgGR0BEAAAAAAAAaAdLKGgIR0AprAWSEDhcdWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 30,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVEAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgQKJYEAAAAAAAAAAEBAQGUaBRLBIWUaBh0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgQKJYQAAAAAAAAAJqZmcD//3//UHfWvv//f/+UaApLBIWUaBh0lFKUjARoaWdolGgQKJYQAAAAAAAAAJqZmUD//39/UHfWPv//f3+UaApLBIWUaBh0lFKUjAhsb3dfcmVwcpSMPVstNC44MDAwMDAyZSswMCAtMy40MDI4MjM1ZSszOCAtNC4xODg3OTAzZS0wMSAtMy40MDI4MjM1ZSszOF2UjAloaWdoX3JlcHKUjDlbNC44MDAwMDAyZSswMCAzLjQwMjgyMzVlKzM4IDQuMTg4NzkwM2UtMDEgMy40MDI4MjM1ZSszOF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True]",
60
+ "bounded_above": "[ True True True True]",
61
+ "_shape": [
62
+ 4
63
+ ],
64
+ "low": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]",
65
+ "high": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]",
66
+ "low_repr": "[-4.8000002e+00 -3.4028235e+38 -4.1887903e-01 -3.4028235e+38]",
67
+ "high_repr": "[4.8000002e+00 3.4028235e+38 4.1887903e-01 3.4028235e+38]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAgAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "2",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 1,
80
+ "n_steps": 2048,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-CartPole-v1/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:69d084f60da71cb6b3fdc757dfa5f4fb61a6c91d65373f92406dd0a6198f9c6e
3
+ size 82425
ppo-CartPole-v1/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cf7251ea048c61788d3a9edf6614196b11c9383d5f8993620bcd83e113621426
3
+ size 40641
ppo-CartPole-v1/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-CartPole-v1/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.10.11
3
+ - Stable-Baselines3: 2.0.0a6
4
+ - PyTorch: 2.0.0+cu118
5
+ - GPU Enabled: False
6
+ - Numpy: 1.22.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (61.6 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 236.7, "std_reward": 117.42065406051866, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-03T14:03:47.891422"}