File size: 13,605 Bytes
85bd6ea
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x78521dc070a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78521dc07130>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78521dc071c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78521dc07250>", "_build": "<function ActorCriticPolicy._build at 0x78521dc072e0>", "forward": "<function ActorCriticPolicy.forward at 0x78521dc07370>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x78521dc07400>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78521dc07490>", "_predict": "<function ActorCriticPolicy._predict at 0x78521dc07520>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78521dc075b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78521dc07640>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x78521dc076d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78523b95aec0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 16384, "_total_timesteps": 1000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1693202347775241253, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADZCCz+hmKA+dkajP2xfqL+bgJC/rySivgAAAAAAAAAAOtgUvtldkD+/zEa/AVVOv8P5Tj4Ym2k+AAAAAAAAAAAAdbK9ryq1P2q4U7495BW+mF3evYb9k70AAAAAAAAAAA2b1D7cl/8+eeEMP1Jwnr+SUm2+Uj5TPgAAAAAAAAAAABQiPJDMsz9xgZM9B6kWvqNBoDyNQg4+AAAAAAAAAAA4j/K+d67IPwtPh7+UjrO+jKNRPwqwoj4AAAAAAAAAAADIkjzi77Q/YssZPw3UVDxjDLG8KRIDvgAAAAAAAAAAo4n6PtwhKT6qD1k/K+y0v+1KML+Kko6+AAAAAAAAAABNp4S9ruMSP4TLEL2fLo+/4TLLvV63Kb4AAAAAAAAAAIYdSD6L8q8/GQsuPzHXgb5KRLW9cjLlvQAAAAAAAAAAACGmPPjHcD8CdSa+aoANvyGwYj4YsCk9AAAAAAAAAADzPbq9eoUsPx43Ob6ww46/BtUQPCUSYb0AAAAAAAAAAEB6sr0Hdrw/l2MGv+MgDT5zX9g9dKhEPgAAAAAAAAAAzeOAPOutrT8gJo0+bznvvq8q5byqHwO+AAAAAAAAAACgWAM+CRGNP4TdGD/GZla/aScivsplz70AAAAAAAAAAJqTqDz0GrM/eCsxP0H6Jr5QXcK8EpEjvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -15.384, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwIEkAo1DSgKMAWyUS2qMAXSUR0Azt/wy6+WXdX2UKGgGR8Bi6OWMS9M9aAdLT2gIR0Azw4uK4x1xdX2UKGgGR8BaB/bfxc3VaAdLa2gIR0Azw0JF9a2XdX2UKGgGR8BiUAE6kqMFaAdLdmgIR0AzyFOfukULdX2UKGgGR8BUE+L74zrNaAdLQmgIR0AzyN70Fr2ydX2UKGgGR8BVkn6InBtUaAdLQGgIR0AzylsguAZsdX2UKGgGR8BmCocJdB0IaAdLamgIR0Az1GgzxgAqdX2UKGgGR8BjOABxPwd9aAdLc2gIR0Az3CBf8dgfdX2UKGgGR8B3rml41P30aAdLcGgIR0Az75gPVd5ZdX2UKGgGR8Bs2iEHt4RmaAdLX2gIR0Az80U47zTXdX2UKGgGR8Beze+ZgG8maAdLVWgIR0Az80dilSCOdX2UKGgGR8BbxvN7jT8YaAdLWWgIR0Az90MgEEDAdX2UKGgGR8BQOip3os7NaAdLRmgIR0Az+icoYvWZdX2UKGgGR8BahzQ3PzFuaAdLVGgIR0Az/BSk0rLAdX2UKGgGR8Bz2ln5BTn8aAdLWWgIR0Az/vQnhKlIdX2UKGgGR8Bf32F36hxpaAdLZmgIR0A0EMy8BdUsdX2UKGgGR8BDVYYBNmDlaAdLTGgIR0A0EBsQ/X5GdX2UKGgGR8BqtvtWuHN5aAdLUmgIR0A0Ge/5+H8CdX2UKGgGR8Bat+N96TnraAdLT2gIR0A0InH/95yEdX2UKGgGR8BcdqFh5PdmaAdLX2gIR0A0JnctXgccdX2UKGgGR8B2MVvYODraaAdLY2gIR0A0JcEvCdjHdX2UKGgGR8Bllp3V09yMaAdLPmgIR0A0KqyGBWgfdX2UKGgGR8Bi3BzLfUF0aAdLfGgIR0A0Mk+5e7cxdX2UKGgGR8BVz9KVY6n0aAdLTWgIR0A0PBguyu6mdX2UKGgGR8Bt/QMa0hNeaAdLT2gIR0A0Pf8uSOindX2UKGgGR8BsNuz4UN8WaAdLRWgIR0A0P8La24NJdX2UKGgGR8BgA+xMWXTmaAdLWmgIR0A0TodMj/uLdX2UKGgGR8B0wd3gUDdQaAdLWGgIR0A0UX4TK1XvdX2UKGgGR8BpBk5IYm9haAdLi2gIR0A0U6f8MuvmdX2UKGgGR8BjWyeumrKeaAdLTWgIR0A0XmXgLqlhdX2UKGgGR8B6ELV6NVBEaAdLg2gIR0A0YGEf1YhddX2UKGgGR8BjOQZAIIGAaAdLRGgIR0A0bzWf9P1tdX2UKGgGR8BhfynrIHTraAdLRmgIR0A0bIEbHZK4dX2UKGgGR8BZahbfP5YYaAdLSGgIR0A0b2g3974SdX2UKGgGR8BcLPek56t1aAdLfWgIR0A0dgOjIq9XdX2UKGgGR8BT7tHxz7uVaAdLSWgIR0A0fRKpT/ACdX2UKGgGR8Bak2Xw9aEBaAdLQWgIR0A0f5NGmUGFdX2UKGgGR8BeCslLOAy3aAdLb2gIR0A0f0YTCcgAdX2UKGgGR8BmWYomXw9aaAdLXmgIR0A0gWpqASWadX2UKGgGR8BsAXRCx/utaAdLOmgIR0A0i5zYEnstdX2UKGgGR8B/h4Z3s5XEaAdLeGgIR0A0kJ5VwPy1dX2UKGgGR8BvocFINEw4aAdLXGgIR0A0nLwF1SwXdX2UKGgGR8B2mBWsA/9paAdLVmgIR0A0o6fapPykdX2UKGgGR8BY+vHPu5SWaAdLaGgIR0A0plIEr5IpdX2UKGgGR8Btw/1e0G/vaAdLYmgIR0A0tQ6ZH/cWdX2UKGgGR8Bz6/3QD3dsaAdLWmgIR0A0t8w5/9YPdX2UKGgGR8BW7jf3vhIfaAdLPmgIR0A0vAuZkTYedX2UKGgGR8BUW+nyd4FBaAdLQWgIR0A0vp9qk/KRdX2UKGgGR8BduH6AOJ+EaAdLTGgIR0A0wGsFMZgpdX2UKGgGR8Bovwn0Cih4aAdLTGgIR0A0y3Gn4wh4dX2UKGgGR8BeuD8HfMwDaAdLYmgIR0A0z+/gzguRdX2UKGgGR8B4zJ7x/d6+aAdLZGgIR0A0zwuuieundX2UKGgGR8B90nMcIZ62aAdLZWgIR0A00ri2lVLjdX2UKGgGR8BnbB2OhkAhaAdLY2gIR0A03vPC2tuDdX2UKGgGR8Bh/WS0Sh8IaAdLT2gIR0A04DneSB9UdX2UKGgGR8BQBajJuEVWaAdLRWgIR0A04j7Q9ic5dX2UKGgGR8Bsc7m6oVEeaAdLZ2gIR0A08uuzQeFMdX2UKGgGR8BR4C+HrQgLaAdLTGgIR0A087ngYP5IdX2UKGgGR8BerXf2saKlaAdLPWgIR0A0+bL2YfGNdX2UKGgGR8BidbvPTodNaAdLnWgIR0A0+jFQ2uPndX2UKGgGR8Bl8BfF72L6aAdLTmgIR0A1BgWJrLyMdX2UKGgGR8BboBv3rUsnaAdLT2gIR0A1DoMrmQr+dX2UKGgGR8BkUvSOR1YAaAdLNWgIR0A1EtnPE87qdX2UKGgGR8BxrRRO1v2oaAdLXGgIR0A1EQf6oESvdX2UKGgGR8BTVPra/RE4aAdLQWgIR0A1H5Rjz7MxdX2UKGgGR8By8chzNliCaAdLe2gIR0A1HohIOH32dX2UKGgGR8BmlkBIWgvlaAdLVmgIR0A1IQNTcZccdX2UKGgGR8BmH9/Ue+23aAdLZGgIR0A1IdbgTAWSdX2UKGgGR0ATheeFtbcHaAdLX2gIR0A1LXrt3OfNdX2UKGgGR8BNaNvXK8tgaAdLQWgIR0A1MZxJd0JXdX2UKGgGR8BeqOTNdJJ5aAdLYWgIR0A1Mkhib2DhdX2UKGgGR8BSC+vyLAHnaAdLOmgIR0A1MhOxjawmdX2UKGgGR8BSAIk7fYSQaAdLQmgIR0A1M4dIXj2jdX2UKGgGR8B51DOQhfShaAdLVmgIR0A1Nhy8zyjIdX2UKGgGR8B+BSo/A0sOaAdLaGgIR0A1NY9gWrOrdX2UKGgGR8BadUNSZSeiaAdLQmgIR0A1RIHC4z7/dX2UKGgGR8BvKWQfZElWaAdLTWgIR0A1W+XqqwQldX2UKGgGR8BpIvjhky1vaAdLamgIR0A1XqMm4RVZdX2UKGgGR8BfcxshxHXmaAdLRmgIR0A1Yuq3mV7hdX2UKGgGR8BovPA9FF2FaAdLX2gIR0A1a6kIomXxdX2UKGgGR8BaM35aePJaaAdLX2gIR0A1ba/RE4NrdX2UKGgGR8BibrO5avA5aAdLUGgIR0A1b81n/T9bdX2UKGgGR8BkEBsVLzwuaAdLXWgIR0A1elP8AJb/dX2UKGgGR8BX/3ARChN/aAdLS2gIR0A1ewNsnAqNdX2UKGgGR8Ba4TdcjZ+QaAdLVWgIR0A1hNjLB9CvdX2UKGgGR8BivT/jsD4haAdLV2gIR0A1iEm6XjU/dX2UKGgGR8B7YxIH1OCYaAdLa2gIR0A1iUd7v5P/dX2UKGgGR8B6+3+CK77LaAdLXGgIR0A1j9ph4MWodX2UKGgGR8Bs/WrhisnzaAdLW2gIR0A1jo/zJ6ppdX2UKGgGR8Bgfah8IAwPaAdLcWgIR0A1m9jPOY6XdX2UKGgGR8BWaQUcn3L3aAdLcmgIR0A1oLfk3juKdX2UKGgGR8BuYuvZAY51aAdLWWgIR0A1s/ACW/rTdX2UKGgGR8Be/dlqagEmaAdLdGgIR0A1ttlqagEmdX2UKGgGR8Bh7QXKr7wbaAdLXmgIR0A1vj8k2P1ddX2UKGgGR8BVLoMfA9FGaAdLS2gIR0A1w5ckdFOPdX2UKGgGR8BxB/sRg7YDaAdLVmgIR0A1w6ZYxL00dX2UKGgGR8BomsTcqOLjaAdLbmgIR0A1y7/n4fwJdX2UKGgGR8BvE+Lgn+hoaAdLY2gIR0A1zocJdB0IdX2UKGgGR8BT2+6y0KJEaAdLRGgIR0A100P6KtPpdX2UKGgGR8BeH8UVSGahaAdLRGgIR0A10hwVCXyBdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}