ThomasSimonini HF staff commited on
Commit
aff14f0
1 Parent(s): a7a4ec6

Upload PPO LunarLander-v2 trained agent

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,8 +1,23 @@
1
  ---
 
2
  tags:
 
3
  - deep-reinforcement-learning
4
  - reinforcement-learning
5
  - stable-baselines3
 
 
 
 
 
 
 
 
 
 
 
 
 
6
  ---
7
  # ppo-LunarLander-v2
8
 
 
1
  ---
2
+ library_name: stable-baselines3
3
  tags:
4
+ - LunarLander-v2
5
  - deep-reinforcement-learning
6
  - reinforcement-learning
7
  - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 271.51 +/- 16.73
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
  ---
22
  # ppo-LunarLander-v2
23
 
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f41d9183b00>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f41d9183b90>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f41d9183c20>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f41d9183cb0>", "_build": "<function ActorCriticPolicy._build at 0x7f41d9183d40>", "forward": "<function ActorCriticPolicy.forward at 0x7f41d9183dd0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f41d9183e60>", "_predict": "<function ActorCriticPolicy._predict at 0x7f41d9183ef0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f41d9183f80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f41d9108050>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f41d91080e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f41d9148e10>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651584013.3860974, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZvm6DH/Gb0CUhpRSlIwBbJRLwIwBdJRHQJy/pnTRYzV1fZQoaAZoCWgPQwit+8dCdJxzQJSGlFKUaBVL+GgWR0Ccv8RCx/utdX2UKGgGaAloD0MId/UqMro3bkCUhpRSlGgVS8toFkdAnMBXNxEORXV9lChoBmgJaA9DCMAhVKnZKHBAlIaUUpRoFUvKaBZHQJzA4XHim2t1fZQoaAZoCWgPQwjr/rEQ3cRxQJSGlFKUaBVLvmgWR0CcwWjX4CZGdX2UKGgGaAloD0MIVmXfFcGNckCUhpRSlGgVS9ZoFkdAnMHB9PUKA3V9lChoBmgJaA9DCGVuvhHd0G9AlIaUUpRoFU0QAmgWR0Ccw7Gsmv4edX2UKGgGaAloD0MI6j9rfvxNYkCUhpRSlGgVTegDaBZHQJzEn+S8rZt1fZQoaAZoCWgPQwhQOLu1zLNyQJSGlFKUaBVLzGgWR0CcxVS3b212dX2UKGgGaAloD0MIcqWeBaFMb0CUhpRSlGgVS8hoFkdAnMWb2USqVHV9lChoBmgJaA9DCFX7dDzmtnBAlIaUUpRoFUvtaBZHQJzFm1mapgl1fZQoaAZoCWgPQwhZMsfyLrlwQJSGlFKUaBVLuWgWR0CcxvVsUIszdX2UKGgGaAloD0MIN+FembdISECUhpRSlGgVS9JoFkdAnMdMcENe+nV9lChoBmgJaA9DCMqLTMCvl3FAlIaUUpRoFUvLaBZHQJzIQV9F4LV1fZQoaAZoCWgPQwgKEAUzJppxQJSGlFKUaBVL5WgWR0CcyJpAUtZndX2UKGgGaAloD0MInzvB/muGc0CUhpRSlGgVS+BoFkdAnMmk/OdGzHV9lChoBmgJaA9DCHBdMSO88G5AlIaUUpRoFUvaaBZHQJzKUSRKYiR1fZQoaAZoCWgPQwgQlUbM7A9BQJSGlFKUaBVLtGgWR0Ccy7mlqJuVdX2UKGgGaAloD0MIeVc9YF5LcECUhpRSlGgVTQwBaBZHQJzMAzpHI6t1fZQoaAZoCWgPQwhj0t9LYS1wQJSGlFKUaBVNRwNoFkdAnM0HIIWxhXV9lChoBmgJaA9DCBMteTwts21AlIaUUpRoFUvdaBZHQJzOIuh9LHx1fZQoaAZoCWgPQwjePNUhNwdOQJSGlFKUaBVLtmgWR0CczqKoQ4CIdX2UKGgGaAloD0MIgT/8/LcScECUhpRSlGgVS+loFkdAnM7g2VE/jnV9lChoBmgJaA9DCHjVA+Yhm3FAlIaUUpRoFUvraBZHQJzO9m+TNdJ1fZQoaAZoCWgPQwgZVYZx9ylxQJSGlFKUaBVLzWgWR0CczzQrtmcwdX2UKGgGaAloD0MIc3/1uK9scECUhpRSlGgVS+VoFkdAnNFXPAwfyXV9lChoBmgJaA9DCLRVSWTfcnFAlIaUUpRoFUvwaBZHQJzSGcOLBKt1fZQoaAZoCWgPQwjB/YAHBrdyQJSGlFKUaBVL4GgWR0Cc0x/BFd9ldX2UKGgGaAloD0MIJbA5B88MY0CUhpRSlGgVTegDaBZHQJzTWznied11fZQoaAZoCWgPQwjusl93OtpyQJSGlFKUaBVLyGgWR0Cc04n9ehPCdX2UKGgGaAloD0MIsTBETl/KbkCUhpRSlGgVS8VoFkdAnNOornTy8XV9lChoBmgJaA9DCPrS258LhWRAlIaUUpRoFU3oA2gWR0Cc1JkpZwGXdX2UKGgGaAloD0MI521sdqQocECUhpRSlGgVS89oFkdAnNbIS13MZHV9lChoBmgJaA9DCKBU+3R8xnBAlIaUUpRoFUvKaBZHQJzW1zxPO6d1fZQoaAZoCWgPQwgjSRCugPhxQJSGlFKUaBVL7GgWR0Cc1xT+ee4DdX2UKGgGaAloD0MIP+YDAh19cECUhpRSlGgVS7toFkdAnNh3sC1Z1XV9lChoBmgJaA9DCDF8REzJuXJAlIaUUpRoFU0JAWgWR0Cc2L1QqI8AdX2UKGgGaAloD0MIAvT7/k1pYkCUhpRSlGgVTegDaBZHQJzZQ5o4+8p1fZQoaAZoCWgPQwgwmwDDMoZwQJSGlFKUaBVNFAFoFkdAnNlq0D2alXV9lChoBmgJaA9DCKuYSj8h/HBAlIaUUpRoFUvVaBZHQJzbXpSrHVB1fZQoaAZoCWgPQwju0Rvuo0lwQJSGlFKUaBVL2mgWR0Cc21q8DjiodX2UKGgGaAloD0MIlN43vnZec0CUhpRSlGgVTQgBaBZHQJze7rxAjY91fZQoaAZoCWgPQwjSVE/mH8JxQJSGlFKUaBVLtGgWR0Cc37gDRtxddX2UKGgGaAloD0MIhNiZQmfPcECUhpRSlGgVS+ZoFkdAnOAUk4WDYnV9lChoBmgJaA9DCIPDCyJS5W9AlIaUUpRoFUvnaBZHQJzgEK8cuJ11fZQoaAZoCWgPQwipbFhTmZhxQJSGlFKUaBVLzGgWR0Cc4Q0iQkondX2UKGgGaAloD0MIIAn7dhL6cECUhpRSlGgVS7xoFkdAnOEd1IRRM3V9lChoBmgJaA9DCOCgvfp47nBAlIaUUpRoFU0JAWgWR0Cc4d/yoXKsdX2UKGgGaAloD0MIQS5x5AHeb0CUhpRSlGgVS7xoFkdAnONp7HAAQ3V9lChoBmgJaA9DCISCUrTyYHFAlIaUUpRoFU0MAWgWR0Cc5G9eyAx0dX2UKGgGaAloD0MIc/ON6B7+cECUhpRSlGgVS+FoFkdAnOUJPEbYLHV9lChoBmgJaA9DCCC4yhMIU0VAlIaUUpRoFUuAaBZHQJznk41gpjN1fZQoaAZoCWgPQwjrAfOQaeFwQJSGlFKUaBVLy2gWR0Cc5/haTwDvdX2UKGgGaAloD0MIxebj2tD3cUCUhpRSlGgVS8VoFkdAnOjYWtU4rHV9lChoBmgJaA9DCGQke4Sa5XJAlIaUUpRoFUvPaBZHQJzo8meDnNh1fZQoaAZoCWgPQwhRMjm1M+NuQJSGlFKUaBVL12gWR0Cc6sYhMajvdX2UKGgGaAloD0MIlzrI68EMcUCUhpRSlGgVTQYBaBZHQJzr9xPwd811fZQoaAZoCWgPQwiXAPxTKk1iQJSGlFKUaBVN6ANoFkdAnOy4agmJFnV9lChoBmgJaA9DCBMsDmf+wG5AlIaUUpRoFUvMaBZHQJzxKqNp/PR1fZQoaAZoCWgPQwiDwqBMI3NvQJSGlFKUaBVL22gWR0Cc8lII4VASdX2UKGgGaAloD0MIFTduMT+LcECUhpRSlGgVS8loFkdAnPJnU2DQJHV9lChoBmgJaA9DCMAlAP8Unm9AlIaUUpRoFUvLaBZHQJzymQkona51fZQoaAZoCWgPQwgvaYzWUVBxQJSGlFKUaBVNgAFoFkdAnPLetbLU1HV9lChoBmgJaA9DCJRrCmT2y3BAlIaUUpRoFUu6aBZHQJzzkw0wait1fZQoaAZoCWgPQwh7ZkmAmpNlQJSGlFKUaBVN6ANoFkdAnPPkzj3mFXV9lChoBmgJaA9DCCekNQbdP3BAlIaUUpRoFU1dAWgWR0Cc9KZCfHxSdX2UKGgGaAloD0MIKh2s/3M8bUCUhpRSlGgVS8toFkdAnPXzzRQaaXV9lChoBmgJaA9DCBYzwtuDZV5AlIaUUpRoFU3oA2gWR0Cc90glWwNcdX2UKGgGaAloD0MI+3d95izOcECUhpRSlGgVTQYBaBZHQJz3xKxs2vV1fZQoaAZoCWgPQwhLOV/s/SZxQJSGlFKUaBVL4mgWR0Cc+tAuqWC3dX2UKGgGaAloD0MI1c3F3zbhckCUhpRSlGgVS8xoFkdAnPrsG9pRGnV9lChoBmgJaA9DCGvSbYncCnJAlIaUUpRoFUvWaBZHQJz7RgQYk3V1fZQoaAZoCWgPQwiyaDo7mZ1tQJSGlFKUaBVLvmgWR0Cc+7Ns3yZsdX2UKGgGaAloD0MIBr6iW69bb0CUhpRSlGgVS91oFkdAnPysUIsyz3V9lChoBmgJaA9DCGajc34KzGBAlIaUUpRoFU3oA2gWR0Cc/K8Hv+fidX2UKGgGaAloD0MI3nGKjiSXcUCUhpRSlGgVS/VoFkdAnPzHhjvuxHV9lChoBmgJaA9DCP+xEB0Cr0RAlIaUUpRoFUvJaBZHQJz85WsA/9p1fZQoaAZoCWgPQwgi4Xt/wzBxQJSGlFKUaBVL8mgWR0Cc/OJdSl3ydX2UKGgGaAloD0MIi4hi8gYjYECUhpRSlGgVTegDaBZHQJz93Jgb6xh1fZQoaAZoCWgPQwh0Yg/tY5djQJSGlFKUaBVN6ANoFkdAnP36gAZKnXV9lChoBmgJaA9DCFmHo6u0iXBAlIaUUpRoFUvLaBZHQJz/PiFTNt91fZQoaAZoCWgPQwh2/1iIDhtvQJSGlFKUaBVL5mgWR0Cc/7JcxCY1dX2UKGgGaAloD0MIqDej5iuocUCUhpRSlGgVTRgBaBZHQJ0AT4VRDTl1fZQoaAZoCWgPQwi1xMpopBxxQJSGlFKUaBVLtmgWR0CdAPpgkTpQdX2UKGgGaAloD0MIzLOSVnyscECUhpRSlGgVS8BoFkdAnQFkfDDTB3V9lChoBmgJaA9DCN8yp8uiinBAlIaUUpRoFUvPaBZHQJ0CK0IC2c91fZQoaAZoCWgPQwhWC+wxEY9uQJSGlFKUaBVLxGgWR0CdAv+wTufFdX2UKGgGaAloD0MIxofZyzY4ckCUhpRSlGgVS8VoFkdAnQMfo/zJ63V9lChoBmgJaA9DCN/8holGR3FAlIaUUpRoFUu7aBZHQJ0D9N0vGqB1fZQoaAZoCWgPQwhQOLu1jFVwQJSGlFKUaBVL3WgWR0CdBA3Lmp2mdX2UKGgGaAloD0MIUp55Oay1c0CUhpRSlGgVS+1oFkdAnQSV54W1t3V9lChoBmgJaA9DCJSHhVoTMXBAlIaUUpRoFUvOaBZHQJ0EvPGACnx1fZQoaAZoCWgPQwhoXDgQksJwQJSGlFKUaBVLxGgWR0CdBeR/mT1TdX2UKGgGaAloD0MIpI0j1iLQckCUhpRSlGgVS89oFkdAnQeuoYNy53V9lChoBmgJaA9DCEM50a7CwnJAlIaUUpRoFUvFaBZHQJ0IEq9XcQB1fZQoaAZoCWgPQwhbtABtaxFwQJSGlFKUaBVL12gWR0CdCjX2ugYhdX2UKGgGaAloD0MI9FKxMa+cYkCUhpRSlGgVTegDaBZHQJ0MPKmsNlR1fZQoaAZoCWgPQwgaiGUzh4JwQJSGlFKUaBVL3GgWR0CdDOSpR4yHdX2UKGgGaAloD0MIiudsAeGtcECUhpRSlGgVS+1oFkdAnQ2OglF+eHV9lChoBmgJaA9DCLdfPlkxvGFAlIaUUpRoFU3oA2gWR0CdDe274BV/dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:dd77abb63770befe073e3cd5b65c015e6a8f5261168bc8ee5c295b5410cf65e6
3
- size 144138
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1f05bdd3430c9aa6c648c16418a30429f931bfa3f45f95a108e2d616ccdb772b
3
+ size 143082
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f41d9183b00>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f41d9183b90>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f41d9183c20>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f41d9183cb0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f41d9183d40>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f41d9183dd0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f41d9183e60>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f41d9183ef0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f41d9183f80>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f41d9108050>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f41d91080e0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f41d9148e10>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1651584013.3860974,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": null,
58
+ "_last_episode_starts": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_original_obs": null,
63
+ "_episode_num": 0,
64
+ "use_sde": false,
65
+ "sde_sample_freq": -1,
66
+ "_current_progress_remaining": -0.015808000000000044,
67
+ "ep_info_buffer": {
68
+ ":type:": "<class 'collections.deque'>",
69
+ ":serialized:": "gAWVNhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIZvm6DH/Gb0CUhpRSlIwBbJRLwIwBdJRHQJy/pnTRYzV1fZQoaAZoCWgPQwit+8dCdJxzQJSGlFKUaBVL+GgWR0Ccv8RCx/utdX2UKGgGaAloD0MId/UqMro3bkCUhpRSlGgVS8toFkdAnMBXNxEORXV9lChoBmgJaA9DCMAhVKnZKHBAlIaUUpRoFUvKaBZHQJzA4XHim2t1fZQoaAZoCWgPQwjr/rEQ3cRxQJSGlFKUaBVLvmgWR0CcwWjX4CZGdX2UKGgGaAloD0MIVmXfFcGNckCUhpRSlGgVS9ZoFkdAnMHB9PUKA3V9lChoBmgJaA9DCGVuvhHd0G9AlIaUUpRoFU0QAmgWR0Ccw7Gsmv4edX2UKGgGaAloD0MI6j9rfvxNYkCUhpRSlGgVTegDaBZHQJzEn+S8rZt1fZQoaAZoCWgPQwhQOLu1zLNyQJSGlFKUaBVLzGgWR0CcxVS3b212dX2UKGgGaAloD0MIcqWeBaFMb0CUhpRSlGgVS8hoFkdAnMWb2USqVHV9lChoBmgJaA9DCFX7dDzmtnBAlIaUUpRoFUvtaBZHQJzFm1mapgl1fZQoaAZoCWgPQwhZMsfyLrlwQJSGlFKUaBVLuWgWR0CcxvVsUIszdX2UKGgGaAloD0MIN+FembdISECUhpRSlGgVS9JoFkdAnMdMcENe+nV9lChoBmgJaA9DCMqLTMCvl3FAlIaUUpRoFUvLaBZHQJzIQV9F4LV1fZQoaAZoCWgPQwgKEAUzJppxQJSGlFKUaBVL5WgWR0CcyJpAUtZndX2UKGgGaAloD0MInzvB/muGc0CUhpRSlGgVS+BoFkdAnMmk/OdGzHV9lChoBmgJaA9DCHBdMSO88G5AlIaUUpRoFUvaaBZHQJzKUSRKYiR1fZQoaAZoCWgPQwgQlUbM7A9BQJSGlFKUaBVLtGgWR0Ccy7mlqJuVdX2UKGgGaAloD0MIeVc9YF5LcECUhpRSlGgVTQwBaBZHQJzMAzpHI6t1fZQoaAZoCWgPQwhj0t9LYS1wQJSGlFKUaBVNRwNoFkdAnM0HIIWxhXV9lChoBmgJaA9DCBMteTwts21AlIaUUpRoFUvdaBZHQJzOIuh9LHx1fZQoaAZoCWgPQwjePNUhNwdOQJSGlFKUaBVLtmgWR0CczqKoQ4CIdX2UKGgGaAloD0MIgT/8/LcScECUhpRSlGgVS+loFkdAnM7g2VE/jnV9lChoBmgJaA9DCHjVA+Yhm3FAlIaUUpRoFUvraBZHQJzO9m+TNdJ1fZQoaAZoCWgPQwgZVYZx9ylxQJSGlFKUaBVLzWgWR0CczzQrtmcwdX2UKGgGaAloD0MIc3/1uK9scECUhpRSlGgVS+VoFkdAnNFXPAwfyXV9lChoBmgJaA9DCLRVSWTfcnFAlIaUUpRoFUvwaBZHQJzSGcOLBKt1fZQoaAZoCWgPQwjB/YAHBrdyQJSGlFKUaBVL4GgWR0Cc0x/BFd9ldX2UKGgGaAloD0MIJbA5B88MY0CUhpRSlGgVTegDaBZHQJzTWznied11fZQoaAZoCWgPQwjusl93OtpyQJSGlFKUaBVLyGgWR0Cc04n9ehPCdX2UKGgGaAloD0MIsTBETl/KbkCUhpRSlGgVS8VoFkdAnNOornTy8XV9lChoBmgJaA9DCPrS258LhWRAlIaUUpRoFU3oA2gWR0Cc1JkpZwGXdX2UKGgGaAloD0MI521sdqQocECUhpRSlGgVS89oFkdAnNbIS13MZHV9lChoBmgJaA9DCKBU+3R8xnBAlIaUUpRoFUvKaBZHQJzW1zxPO6d1fZQoaAZoCWgPQwgjSRCugPhxQJSGlFKUaBVL7GgWR0Cc1xT+ee4DdX2UKGgGaAloD0MIP+YDAh19cECUhpRSlGgVS7toFkdAnNh3sC1Z1XV9lChoBmgJaA9DCDF8REzJuXJAlIaUUpRoFU0JAWgWR0Cc2L1QqI8AdX2UKGgGaAloD0MIAvT7/k1pYkCUhpRSlGgVTegDaBZHQJzZQ5o4+8p1fZQoaAZoCWgPQwgwmwDDMoZwQJSGlFKUaBVNFAFoFkdAnNlq0D2alXV9lChoBmgJaA9DCKuYSj8h/HBAlIaUUpRoFUvVaBZHQJzbXpSrHVB1fZQoaAZoCWgPQwju0Rvuo0lwQJSGlFKUaBVL2mgWR0Cc21q8DjiodX2UKGgGaAloD0MIlN43vnZec0CUhpRSlGgVTQgBaBZHQJze7rxAjY91fZQoaAZoCWgPQwjSVE/mH8JxQJSGlFKUaBVLtGgWR0Cc37gDRtxddX2UKGgGaAloD0MIhNiZQmfPcECUhpRSlGgVS+ZoFkdAnOAUk4WDYnV9lChoBmgJaA9DCIPDCyJS5W9AlIaUUpRoFUvnaBZHQJzgEK8cuJ11fZQoaAZoCWgPQwipbFhTmZhxQJSGlFKUaBVLzGgWR0Cc4Q0iQkondX2UKGgGaAloD0MIIAn7dhL6cECUhpRSlGgVS7xoFkdAnOEd1IRRM3V9lChoBmgJaA9DCOCgvfp47nBAlIaUUpRoFU0JAWgWR0Cc4d/yoXKsdX2UKGgGaAloD0MIQS5x5AHeb0CUhpRSlGgVS7xoFkdAnONp7HAAQ3V9lChoBmgJaA9DCISCUrTyYHFAlIaUUpRoFU0MAWgWR0Cc5G9eyAx0dX2UKGgGaAloD0MIc/ON6B7+cECUhpRSlGgVS+FoFkdAnOUJPEbYLHV9lChoBmgJaA9DCCC4yhMIU0VAlIaUUpRoFUuAaBZHQJznk41gpjN1fZQoaAZoCWgPQwjrAfOQaeFwQJSGlFKUaBVLy2gWR0Cc5/haTwDvdX2UKGgGaAloD0MIxebj2tD3cUCUhpRSlGgVS8VoFkdAnOjYWtU4rHV9lChoBmgJaA9DCGQke4Sa5XJAlIaUUpRoFUvPaBZHQJzo8meDnNh1fZQoaAZoCWgPQwhRMjm1M+NuQJSGlFKUaBVL12gWR0Cc6sYhMajvdX2UKGgGaAloD0MIlzrI68EMcUCUhpRSlGgVTQYBaBZHQJzr9xPwd811fZQoaAZoCWgPQwiXAPxTKk1iQJSGlFKUaBVN6ANoFkdAnOy4agmJFnV9lChoBmgJaA9DCBMsDmf+wG5AlIaUUpRoFUvMaBZHQJzxKqNp/PR1fZQoaAZoCWgPQwiDwqBMI3NvQJSGlFKUaBVL22gWR0Cc8lII4VASdX2UKGgGaAloD0MIFTduMT+LcECUhpRSlGgVS8loFkdAnPJnU2DQJHV9lChoBmgJaA9DCMAlAP8Unm9AlIaUUpRoFUvLaBZHQJzymQkona51fZQoaAZoCWgPQwgvaYzWUVBxQJSGlFKUaBVNgAFoFkdAnPLetbLU1HV9lChoBmgJaA9DCJRrCmT2y3BAlIaUUpRoFUu6aBZHQJzzkw0wait1fZQoaAZoCWgPQwh7ZkmAmpNlQJSGlFKUaBVN6ANoFkdAnPPkzj3mFXV9lChoBmgJaA9DCCekNQbdP3BAlIaUUpRoFU1dAWgWR0Cc9KZCfHxSdX2UKGgGaAloD0MIKh2s/3M8bUCUhpRSlGgVS8toFkdAnPXzzRQaaXV9lChoBmgJaA9DCBYzwtuDZV5AlIaUUpRoFU3oA2gWR0Cc90glWwNcdX2UKGgGaAloD0MI+3d95izOcECUhpRSlGgVTQYBaBZHQJz3xKxs2vV1fZQoaAZoCWgPQwhLOV/s/SZxQJSGlFKUaBVL4mgWR0Cc+tAuqWC3dX2UKGgGaAloD0MI1c3F3zbhckCUhpRSlGgVS8xoFkdAnPrsG9pRGnV9lChoBmgJaA9DCGvSbYncCnJAlIaUUpRoFUvWaBZHQJz7RgQYk3V1fZQoaAZoCWgPQwiyaDo7mZ1tQJSGlFKUaBVLvmgWR0Cc+7Ns3yZsdX2UKGgGaAloD0MIBr6iW69bb0CUhpRSlGgVS91oFkdAnPysUIsyz3V9lChoBmgJaA9DCGajc34KzGBAlIaUUpRoFU3oA2gWR0Cc/K8Hv+fidX2UKGgGaAloD0MI3nGKjiSXcUCUhpRSlGgVS/VoFkdAnPzHhjvuxHV9lChoBmgJaA9DCP+xEB0Cr0RAlIaUUpRoFUvJaBZHQJz85WsA/9p1fZQoaAZoCWgPQwgi4Xt/wzBxQJSGlFKUaBVL8mgWR0Cc/OJdSl3ydX2UKGgGaAloD0MIi4hi8gYjYECUhpRSlGgVTegDaBZHQJz93Jgb6xh1fZQoaAZoCWgPQwh0Yg/tY5djQJSGlFKUaBVN6ANoFkdAnP36gAZKnXV9lChoBmgJaA9DCFmHo6u0iXBAlIaUUpRoFUvLaBZHQJz/PiFTNt91fZQoaAZoCWgPQwh2/1iIDhtvQJSGlFKUaBVL5mgWR0Cc/7JcxCY1dX2UKGgGaAloD0MIqDej5iuocUCUhpRSlGgVTRgBaBZHQJ0AT4VRDTl1fZQoaAZoCWgPQwi1xMpopBxxQJSGlFKUaBVLtmgWR0CdAPpgkTpQdX2UKGgGaAloD0MIzLOSVnyscECUhpRSlGgVS8BoFkdAnQFkfDDTB3V9lChoBmgJaA9DCN8yp8uiinBAlIaUUpRoFUvPaBZHQJ0CK0IC2c91fZQoaAZoCWgPQwhWC+wxEY9uQJSGlFKUaBVLxGgWR0CdAv+wTufFdX2UKGgGaAloD0MIxofZyzY4ckCUhpRSlGgVS8VoFkdAnQMfo/zJ63V9lChoBmgJaA9DCN/8holGR3FAlIaUUpRoFUu7aBZHQJ0D9N0vGqB1fZQoaAZoCWgPQwhQOLu1jFVwQJSGlFKUaBVL3WgWR0CdBA3Lmp2mdX2UKGgGaAloD0MIUp55Oay1c0CUhpRSlGgVS+1oFkdAnQSV54W1t3V9lChoBmgJaA9DCJSHhVoTMXBAlIaUUpRoFUvOaBZHQJ0EvPGACnx1fZQoaAZoCWgPQwhoXDgQksJwQJSGlFKUaBVLxGgWR0CdBeR/mT1TdX2UKGgGaAloD0MIpI0j1iLQckCUhpRSlGgVS89oFkdAnQeuoYNy53V9lChoBmgJaA9DCEM50a7CwnJAlIaUUpRoFUvFaBZHQJ0IEq9XcQB1fZQoaAZoCWgPQwhbtABtaxFwQJSGlFKUaBVL12gWR0CdCjX2ugYhdX2UKGgGaAloD0MI9FKxMa+cYkCUhpRSlGgVTegDaBZHQJ0MPKmsNlR1fZQoaAZoCWgPQwgaiGUzh4JwQJSGlFKUaBVL3GgWR0CdDOSpR4yHdX2UKGgGaAloD0MIiudsAeGtcECUhpRSlGgVS+1oFkdAnQ2OglF+eHV9lChoBmgJaA9DCLdfPlkxvGFAlIaUUpRoFU3oA2gWR0CdDe274BV/dWUu"
70
+ },
71
+ "ep_success_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
74
+ },
75
+ "_n_updates": 310,
76
+ "n_steps": 2048,
77
+ "gamma": 0.99,
78
+ "gae_lambda": 0.95,
79
+ "ent_coef": 0.0,
80
+ "vf_coef": 0.5,
81
+ "max_grad_norm": 0.5,
82
+ "batch_size": 64,
83
+ "n_epochs": 10,
84
+ "clip_range": {
85
+ ":type:": "<class 'function'>",
86
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
87
+ },
88
+ "clip_range_vf": null,
89
+ "normalize_advantage": true,
90
+ "target_kl": null
91
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cbebf30a2e3d01b116435cb46e017d00f13b7becb481bd2d7366443e71d31292
3
+ size 84893
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5d25f5107951d61a8fd96667a5e6a6dabee18a5e525c6f7d87082746009893ab
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 271.5149968884293, "std_reward": 16.73003821087636, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-03T14:01:41.574280"}