Commit
•
61f262a
1
Parent(s):
3488b9b
Initial commit
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-Walker2DBulletEnv-v0.zip +2 -2
- ppo-Walker2DBulletEnv-v0/data +19 -19
- ppo-Walker2DBulletEnv-v0/policy.optimizer.pth +2 -2
- ppo-Walker2DBulletEnv-v0/policy.pth +1 -1
- replay.mp4 +2 -2
- results.json +1 -1
- vec_normalize.pkl +0 -0
README.md
CHANGED
@@ -10,7 +10,7 @@ model-index:
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
-
value:
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
+
value: 29.51 +/- 2.93
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8c03269680>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8c03269710>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8c032697a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8c03269830>", "_build": "<function ActorCriticPolicy._build at 0x7f8c032698c0>", "forward": "<function ActorCriticPolicy.forward at 0x7f8c03269950>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8c032699e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8c03269a70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8c03269b00>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8c03269b90>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8c03269c20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f8c032b88a0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVjgAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA1hY3RpdmF0aW9uX2ZulIwbdG9yY2gubm4ubW9kdWxlcy5hY3RpdmF0aW9ulIwEUmVMVZSTlIwIbmV0X2FyY2iUXZR9lCiMAnBplF2UKE0AAU0AAWWMAnZmlF2UKE0AAU0AAWV1YXUu", "log_std_init": -2, "ortho_init": false, "activation_fn": "<class 'torch.nn.modules.activation.ReLU'>", "net_arch": [{"pi": [256, 256], "vf": [256, 256]}]}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVTwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLFoWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsWhZRoColDWAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxaFlGgKiUNYAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLFoWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsWhZRoKolDFgAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [22], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVrwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBoWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsGhZRoColDGAAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5R0lGKMBGhpZ2iUaBJoFEsAhZRoFoeUUpQoSwFLBoWUaAqJQxgAAIA/AACAPwAAgD8AAIA/AACAPwAAgD+UdJRijA1ib3VuZGVkX2JlbG93lGgSaBRLAIWUaBaHlFKUKEsBSwaFlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMGAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsGhZRoKolDBgEBAQEBAZR0lGKMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [6], "low": "[-1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True]", "bounded_above": "[ True True True True True True]", "_np_random": null}, "n_envs": 16, "num_timesteps": 8192, "_total_timesteps": 5000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1657881064.5540903, "learning_rate": 3e-05, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz7/dRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVDQYAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLFoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUKABQAAf3WRvQAAAAD30ok4wqpKvwAAAAANbQe/AAAAAEQVar+PEZ6/FIr9v+DJ/T30S3I/bA0OP+umPr7yN6O+XHKsv8wCir9WejO/kZRevxVF4L8+Kkw/jjiHPyS5D78AAAAA99KJOCFDT74AAAAANLuQvwAAAAAlu86/X225v4wii79w3J6+JdEHv1XZC73JnQs/+XGkv5GaCsCcknq/oBnXP7rA4r5Bd6M/PipMP444hz9cScq9AAAAAPfSiTgsVEc/AAAAACL60z0AAAAAnS5lv6nqDMDimlS/18ZXP5RzOD/mVZI/AoYjPzQc775FdBK/k/qfv7Hmhj5Ocnm/asN6vz4qTD+OOIc/2JfiPgAAAAD30ok4Tlq7vgAAAAC6sl8/AAAAAEi8Rj/4jvY+vvXOveFOLT+BSDg/F+tkv/FZCb+wXCk/n/rWPmCq1T7FU0K/AFLHPgKDND8+Kkw/jjiHP0nPVz4AAAAA99KJOFaiH78AAAAAjXlZPQAAAAAQ1aa8jHtcPQHbtr//JGA9Q/u1PhZ2rL6oPTc+AcEcv4qv478lZZc+hHJ4P7FV5D+VaO++PipMP444hz9HTlHAAAAAAPfSiTjmCCC/AAAAALPglMAAAAAAZg/zvxeDpr5svSXAksRBwAOTNL86Y+o/pk31P2XXF8CvCCDArXwDwArXjb+xhwNAwOvdPj4qTD+OOIc/GilOvQAAAAD30ok4yOCvvwAAAAAChaO+AAAAAEKva71NkFA/127TPinXCb+Ksa2/ALrSPmSH5D90k/4+KWDtvesNDL8R9/I8PAgGPj68CT8+Kkw/jjiHP4m8378AAAAA99KJOKxYm78AAAAAMV0GwAAAAAChOYK/EdFMP3OP8D49EUXA2BAHwDMZiD4Bw4nAoz0svbfsZj2KhOC/wgmRvz6glz/XnDM/ZH+gv1FUcr/Nwr4+AAAAAPfSiTjSEbU9AAAAADl4Rz8AAAAAB2WPPkeEKT6XGQi+U2GZPvdHQD4FMwm/9xSMvtutkL40ASy/7Rg9PxnIvz+6AD+/HJ4qvz4qTD+OOIc/qPlMPwAAAAD30ok45NAmvgAAAAAOiw4+AAAAAJIMMz/cttw+yQ8tv3WQKD/7Cyo/RPDgvvvpZL/5Sba+U3JCv9bLZT8yVWM/DvI4v0/Wir1kf6C/UVRyvwjtcT8AAAAA99KJONcjyT4AAAAAorIyPwAAAAB1DoQ/EFU3P2XpEb3RJVo/inCePp/fjr8uXG49ozpzPz0IpL6fE10//p+GPzGim7+/Lsw9ZH+gv1FUcr8EnY+/AAAAAPfSiTiLj4K/AAAAAKtTfL8AAAAAaqNwv3SZBT/0eaQ+Jhq0v3oXa7/n2Fg/MtdlvxPLpb2w8i4+RmN/v6aPKb/op5Q/SPmKPz4qTD+OOIc/q+hxPwAAAAD30ok4b6egPwAAAABpzDk/AAAAgFlGiz9GRUw/Ft4jP9zE5z6kY/0+rbhbv9qakb7fmII/X1PYPu2lOj/KzY4/6gV+vwnVg75kf6C/UVRyv925CL8AAAAA99KJOJn7Wb8AAAAA1Ee8vgAAAADsZa+/RiQuvxM4Dz8lsES/JjKiv7P7QzxPBZe9RrspP2x11D4l2ei/P8yBv/IWx7+Nz4+/PipMP1FUcr+7TJs+AAAAAPfSiTiOMJ6/AAAAAMm3PD4AAAAAIW/xPee89L15Bue/rsYtP6tvND/PEpW/EtHfvOuW7L4wBh7AWJ2XPktSE0AJA0i+ofsOvz4qTD9RVHK/bSBTPwAAAAD30ok4e06QPgAAAAB2hgA+AAAAADX0Uz/up4g+1hRjv3+0Lj+gPtI+4krwvZi2sz4zUf++LVjYv/SfbT8y2R5AcVmMv3wDq75kf6C/jjiHP5R0lGIu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVDQYAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLFoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUKABQAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAFW4g/AAAAAKWZeT8AAAAAe51cPQAAAACMYHU/AAAAAJOYdj8AAAAATiPJvQAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAWeCGPwAAAADCLW4/AAAAAJtMXL0AAAAALRp8PwAAAADBp4I/AAAAAJn15r0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgDg3fD8AAAAA4gF6PwAAAADoBqq8AAAAAObahT8AAAAA+3h3PwAAAACYNkk9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA5kn8/AAAAAKL7bT8AAAAAK1hBPQAAAABDn4k/AAAAAHhXdj8AAAAAAr8OuwAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAyI2IPwAAAADyMoM/AAAAAPcVPT0AAAAAnTSGPwAAAAD4P4c/AAAAADBJ3L0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgLLxgD8AAAAAUueBPwAAAADakM69AAAAAICxhj8AAAAABVF2PwAAAABqnz69AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA27Xc/AAAAAGwGeT8AAAAAjM7tPQAAAAAjc3A/AAAAAGi3hj8AAAAAnvynPQAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAHiSGPwAAAABiZm8/AAAAADTE/TwAAAAAdDuJPwAAAACFy3s/AAAAADx5Wj0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgAyZcT8AAAAA92SEPwAAAACwB7+9AAAAAMOohj8AAAAAWveEPwAAAACPchu9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIALpIk/AAAAABnMhz8AAAAAf/yGPAAAAACcWHU/AAAAAP1CiT8AAAAAnLXPPQAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAAdeIPwAAAADOV3U/AAAAAA3W2b0AAAAANC+GPwAAAADEuYE/AAAAAGxbhr0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgEVUeT8AAAAAgCh6PwAAAABy+Yo9AAAAAA9GgD8AAAAAhViHPwAAAABoTvS9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAID83Ho/AAAAABzgfz8AAAAAdXqmPQAAAAAFsHw/AAAAAGklgj8AAAAAEdYRvQAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAa4x8PwAAAADl1XQ/AAAAAE2ZHD0AAAAAF7lzPwAAAABKG30/AAAAAB/MyD0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgEGTdT8AAAAA6J9zPwAAAABiTre9AAAAAGi2hz8AAAAAVONsPwAAAAAUZ+w9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICOSHE/AAAAAAg8ej8AAAAApj0quwAAAADR+W4/AAAAANZMeT8AAAAAGmZovQAAAAAAAAAAAAAAAJR0lGIu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": 4, "_current_progress_remaining": -0.6384000000000001, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQDrXSqlxffKMAWyUSxWMAXSUR0BBQqw6hg3MdX2UKGgGR0BARxFy7wrlaAdLHWgIR0BBQv7FbVz7dX2UKGgGR0AtxEGZ/kNnaAdLCWgIR0BBQywnpjc3dX2UKGgGR0AqVVTaTOgQaAdLB2gIR0BBRRzzVc2SdX2UKGgGR0AzUstCiRGMaAdLDmgIR0BBRUrkKeCkdX2UKGgGR0BA3Myad+XraAdLGmgIR0BBS9j5KvmpdX2UKGgGR0A7iDc/MW43aAdLFGgIR0BBS8vugHu7dX2UKGgGR0A735byH2ytaAdLFmgIR0BBS+9Jz1brdX2UKGgGR0A+etlI3BHkaAdLG2gIR0BBTA7gbZOBdX2UKGgGR0A7PpHZsbeeaAdLFmgIR0BBUcd5prULdX2UKGgGR0A2N21lXiiqaAdLD2gIR0BBV43Ns3yadX2UKGgGR0AyqGwA2hqTaAdLDmgIR0BBWashgVoIdX2UKGgGR0AnPjx0+1SgaAdLB2gIR0BBX6LOzIFNdX2UKGgGR0A7RDL8rI5paAdLIWgIR0BBY1eBxxT9dX2UKGgGR0A4V5k9U0emaAdLFGgIR0BBZT7di2DydX2UKGgGR0A3478ejmCAaAdLE2gIR0BBaVYyO7xvdX2UKGgGR0A2R6lLvkR0aAdLEGgIR0BBa3Q+lj3FdX2UKGgGR0AyIVHnU2DQaAdLCmgIR0BBbZ6t1ZDBdX2UKGgGR0A6nG5+YtxuaAdLFmgIR0BBb8CHRCyAdX2UKGgGR0A5ugaFVT73aAdLFmgIR0BBcmJ3xFy8dX2UKGgGR0BD7t+TeO4oaAdLImgIR0BBdPoV2zOYdX2UKGgGR0A6N+iJwbVCaAdLGWgIR0BBeV7x/d6+dX2UKGgGR0BAo3SBshxHaAdLHGgIR0BBe5NoJzDGdX2UKGgGR0A50dsBQvYfaAdLF2gIR0BBe63RXwLFdX2UKGgGR0A/ac4YJmdzaAdLGGgIR0BBfbUXpGF0dX2UKGgGR0A9aahHskY5aAdLGWgIR0BBf9XDFZPmdX2UKGgGR0A3ql0YCQtBaAdLE2gIR0BBgAiV0Lc9dX2UKGgGR0BBAUFKTSssaAdLHmgIR0BBgliBoVVQdX2UKGgGR0A04dj5KvmpaAdLD2gIR0BBhEEC/47BdX2UKGgGR0AulOiWVu76aAdLCWgIR0BBhk9ECvHMdX2UKGgGR0A8nvS+g13uaAdLFmgIR0BBkMCkoF3ZdX2UKGgGR0AwlJGe+VTraAdLCmgIR0BBkK9Gqgh9dX2UKGgGR0AwVL7Gecx1aAdLCWgIR0BBlR8lXzUadX2UKGgGR0A6JyFwkxATaAdLGGgIR0BBm4eLehwmdX2UKGgGR0A5Cr9ETg2qaAdLFmgIR0BBm6InBtUGdX2UKGgGR0A6K4jKPn0TaAdLFWgIR0BBnneaa1CxdX2UKGgGR0A4U5M10knkaAdLFWgIR0BBpU1Q66redX2UKGgGR0A8FqMWGh24aAdLGGgIR0BBp4oy9EkTdX2UKGgGR0A4mAqur6tUaAdLEWgIR0BBp40/GEPEdX2UKGgGR0At6spXp4bCaAdLCWgIR0BBr7rC3w1BdX2UKGgGR0A/+O5J9RaYaAdLHmgIR0BBr99MK1G9dX2UKGgGR0A9ImEGqxTsaAdLGGgIR0BBsho/RmbtdX2UKGgGR0A1wqLjxTbWaAdLFGgIR0BBtChew9q2dX2UKGgGR0A7HstCiRGMaAdLFWgIR0BBtEzwc5sCdX2UKGgGR0A92HmRvFWGaAdLGmgIR0BBuJkf9xZMdX2UKGgGR0BBC1LBbfP5aAdLHGgIR0BButRm9QGfdX2UKGgGR0A6LZOi35N5aAdLE2gIR0BBurwWnCO4dX2UKGgGR0A0/O/+KjzqaAdLDmgIR0BBvOvECNjtdX2UKGgGR0A17VX3g1m8aAdLEGgIR0BBvr1/Ue+3dX2UKGgGR0A0ch5xBE8aaAdLDWgIR0BBwQj+rELqdX2UKGgGR0Av5amGdqcmaAdLCmgIR0BBxNAC4jKQdX2UKGgGR0A1WW56MR6GaAdLDmgIR0BBxTijtXxOdX2UKGgGR0Axx/Pw/gR9aAdLDWgIR0BBy3eenQ6ZdX2UKGgGR0BBxGyPdVNpaAdLHWgIR0BBz9YwIt17dX2UKGgGR0AymGY8dPtVaAdLDGgIR0BB0b1yvLX+dX2UKGgGR0BE8Mhouf29aAdLJGgIR0BB0eRPoFFEdX2UKGgGR0BB9R20Re1KaAdLHmgIR0BB1eDOC5EudX2UKGgGR0A3ZrcTJyQxaAdLGGgIR0BB2ekP+XJHdX2UKGgGR0A0k/zJ6po9aAdLEGgIR0BB29cbBGhFdX2UKGgGR0A0hgZjx0+1aAdLD2gIR0BB3/SQYDT0dX2UKGgGR0A0KGgBcRlIaAdLFWgIR0BB39tMwlBydX2UKGgGR0A11Re1KGtZaAdLEWgIR0BB4A6ltTDPdX2UKGgGR0A6jqQA+6iCaAdLF2gIR0BB4geii7CjdX2UKGgGR0A8dY6GQCCBaAdLG2gIR0BB7L/sE7nxdX2UKGgGR0A2hsdkrf+CaAdLD2gIR0BB76NMoMKDdX2UKGgGR0A461iONo8IaAdLFWgIR0BB8fPgNwzddX2UKGgGR0A10MTviLl4aAdLFWgIR0BB+Cih37k5dX2UKGgGR0AxtC9AX2ugaAdLC2gIR0BB+s3AEdNndX2UKGgGR0A6f3/Pw/gSaAdLE2gIR0BB+vtD2JzldX2UKGgGR0A7HQ+2VmjCaAdLFGgIR0BB/VfmcOLBdX2UKGgGR0AzZsfJV81GaAdLEGgIR0BB/ZdnkDISdX2UKGgGR0A+UkWhysCDaAdLG2gIR0BB/39JjDsMdX2UKGgGR0BAHvu5SWJKaAdLH2gIR0BCAbAckt2+dX2UKGgGR0BC5TEBKcuraAdLIWgIR0BCAfOD8LrpdX2UKGgGR0AzO2IwdsBRaAdLEGgIR0BCBDlHSWqtdX2UKGgGR0A1Wb9If8uSaAdLFGgIR0BCCKF7D2rXdX2UKGgGR0A5zGC7K7qZaAdLEmgIR0BCCNjLB9CvdX2UKGgGR0A0uBd2Pkq+aAdLDWgIR0BCEJI1+AmRdX2UKGgGR0A6SKHO8kD7aAdLFmgIR0BCE7xmTTvzdX2UKGgGR0BAibT2FnIyaAdLHGgIR0BCFeRgZ0jkdX2UKGgGR0Ash9ycTakAaAdLCWgIR0BCGGmk30f6dX2UKGgGR0A1CAckt29taAdLDmgIR0BCHRfnfVI7dX2UKGgGR0Awy2USqU/waAdLCWgIR0BCH6eGwiaBdX2UKGgGR0A1iprULDyfaAdLD2gIR0BCJhn8KohqdX2UKGgGR0A7qs189fTkaAdLGGgIR0BCKPKU3XI2dX2UKGgGR0A4j2H+IdlvaAdLEmgIR0BCL4VRDTjOdX2UKGgGR0A+tYFqzqrzaAdLGWgIR0BCNmcOLBKudX2UKGgGR0BAYxtP557gaAdLGGgIR0BCOFL39JjEdX2UKGgGR0Az9O7xusLfaAdLEWgIR0BCOxfF72L6dX2UKGgGR0BCgfKQq7ROaAdLImgIR0BCPQpON5t4dX2UKGgGR0A2edYnv2GqaAdLDmgIR0BCPUV8CxNZdX2UKGgGR0A4CFEy+HrRaAdLEGgIR0BCPSlnAZbZdX2UKGgGR0A5KGRFI/Z/aAdLE2gIR0BCQX+2mYShdX2UKGgGR0BAGP+GXXyzaAdLH2gIR0BCQX4sVclgdX2UKGgGR0A1m5ggHNX6aAdLEWgIR0BCRh4D9wWFdX2UKGgGR0A6+qjafzz3aAdLGGgIR0BCSIlD4QBgdX2UKGgGR0BEDze40/GEaAdLIWgIR0BCVWrn1WbPdX2UKGgGR0AxZ6nzg/C7aAdLDGgIR0BCVXs5XEIgdX2UKGgGR0BKW1jI7vG7aAdLKGgIR0BCWamGdqcmdX2UKGgGR0A0YtrKvFFVaAdLDWgIR0BCWYXwb2lEdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 20, "n_steps": 512, "gamma": 0.99, "gae_lambda": 0.92, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 20, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/ZmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fc3554fa680>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc3554fa710>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc3554fa7a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc3554fa830>", "_build": "<function ActorCriticPolicy._build at 0x7fc3554fa8c0>", "forward": "<function ActorCriticPolicy.forward at 0x7fc3554fa950>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc3554fa9e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fc3554faa70>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc3554fab00>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc3554fab90>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc3554fac20>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fc3555468d0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVjgAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA1hY3RpdmF0aW9uX2ZulIwbdG9yY2gubm4ubW9kdWxlcy5hY3RpdmF0aW9ulIwEUmVMVZSTlIwIbmV0X2FyY2iUXZR9lCiMAnBplF2UKE0AAU0AAWWMAnZmlF2UKE0AAU0AAWV1YXUu", "log_std_init": -2, "ortho_init": false, "activation_fn": "<class 'torch.nn.modules.activation.ReLU'>", "net_arch": [{"pi": [256, 256], "vf": [256, 256]}]}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVTwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLFoWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsWhZRoColDWAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UdJRijARoaWdolGgSaBRLAIWUaBaHlFKUKEsBSxaFlGgKiUNYAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5R0lGKMDWJvdW5kZWRfYmVsb3eUaBJoFEsAhZRoFoeUUpQoSwFLFoWUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQxYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsWhZRoKolDFgAAAAAAAAAAAAAAAAAAAAAAAAAAAACUdJRijApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [22], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVrwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBoWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsGhZRoColDGAAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5R0lGKMBGhpZ2iUaBJoFEsAhZRoFoeUUpQoSwFLBoWUaAqJQxgAAIA/AACAPwAAgD8AAIA/AACAPwAAgD+UdJRijA1ib3VuZGVkX2JlbG93lGgSaBRLAIWUaBaHlFKUKEsBSwaFlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMGAQEBAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsGhZRoKolDBgEBAQEBAZR0lGKMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [6], "low": "[-1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True]", "bounded_above": "[ True True True True True True]", "_np_random": null}, "n_envs": 16, "num_timesteps": 8192, "_total_timesteps": 4000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1657882489.70774, "learning_rate": 3e-05, "tensorboard_log": "./tensorboard", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz7/dRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVDQYAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLFoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUKABQAAral2vgAAAACipok4ZL/lPwAAAABgzSA+AAAAANG5qr4gF469jew6vzuxp78/Fag/1SZQP1Gd/T4C9r2/RAD9vpm2IT+Joww/UWchQNNmRj6Qd0w/0ntoP2YpgD8AAAAAoqaJOEkIiD8AAAAAFqMqPwAAAACFVYc/uY7oPn0qpzyc9T4/XbSvPm24XL+lSoO+DMf/PmLfDb9V6S0/P4AEQL/Njb9V9YO/skKgv5HyjL+dZRU/AAAAAKKmiTguTEM+AAAAAEEHzjwAAAAA2VVJPxVDXT84tA4/DZoyvvxLR76AQ/S9h4CePwQ7Uj9AIQY/+NLBPkanv71eUHW+IRQhv5B3TD+R8oy/9+2PvwAAAACipok41x6zQAAAAADBmdXAAAAAAKslwL92zTzAfuLgwJFoQD7+op9Au76zPy87dsAjzk/A5kHiwK3KHz+vqqJA1kI4QP+BPMCyQqC/0ntoPxsNqj4AAAAAoqaJOLKGYz8AAAAAz4qAPwAAAAAUMWM/fUJXP1FwhD+HRXU+abViv2XfgD0O9J4/NLpiP1J/Cz/YhlQ/imQaP0pEt7/0NM+/kHdMP5HyjL/QivU7AAAAAKKmiTgn9yW+AAAAAOBWOD4AAAAA8pgCv1yPb79Nriy/zSk1P3NOHD9ZHzS/E0WCvsqxAL98inW/4mQAPbfoqD8LZKm+RbfevpB3TD/Se2g/l9FpPwAAAACipok4b3cEvwAAAACrNRU+AAAAAHfvRD/0kgo/n68lvzvtIz+soe89POw+v+ipEj9r8So+rrpUv+vsJT9R3gg/c/4SvwRqFr6yQqC/kfKMv5tqjr0AAAAAoqaJOOnXWb8AAAAArcqHvQAAAADKpKO9jFWaPkHdjT6rTC+/Fq+Cv0/uHz/VqKI+/2TxPkj3Vr51xL6+nwSBPjguJr4lFAM/kHdMP9J7aD+553Q+AAAAAKKmiThQHw6/AAAAAMiREz8AAAAAZ61EP6tgOD+j7aA/BKoEPCgGGMD73gI/KX8xQAo4YT9UKBE/gp2VvqcQEb9LnpE/ARTEvJB3TD+R8oy/+kiAPwAAAACipok4CawfPwAAAADNsDI/AAAAALCzhT+p0oA/OyNBvoVJID9MOVs/c6iMv/srBr+xA3M/0/MJvmgHVz+uGRk/hzExvj2bMT6yQqC/kfKMv/Bikz4AAAAAoqaJOC/pUz8AAAAAlq2FPwAAAABArp8+n0MMvdWQpT5tVwc/PV1RPxUthr4lNc6+4HC9PUGvAj+GIRQ/UqSuPjGmIr8i+0w+kHdMP9J7aD+k/lI/AAAAAKKmiThDsVA/AAAAANi5Pj4AAAAAwuSLP1ThGD9FdhM/ocISP4uhDD1TBQW/VYyTPzXYYD/ilhI/GP3QPtROkj3F8GE8WvY2P7JCoL+R8oy/1FmCPwAAAACipok4VpGrPwAAAABSbXo/AAAAAAq5jD+dd5A/0ZARP2mQUD9uXSA/xjWXvzfpxL6BvY0/ILcSPyeODD+uGRk/FLsUv8XY276yQqC/kfKMvxxBgD8AAAAAoqaJOK8cHj8AAAAAgTo0PwAAAAAheIY/XUgvP3aHSb3X6XQ/bl0gP6cCgb8bcAG+B9CCP8sKG72F90U/4xgZP8GDJb9eRV++skKgv5HyjL+PGYM+AAAAAKKmiTjX9ac+AAAAAM/odT8AAAAAd5MEPxmaPT/sFAA/6bw+Pj/tZj9p3NK+EKYgv1pKIT+KV08/Z/seP6lMUz3093q/kfA/vpB3TD/Se2g/1FmCPwAAAACipok4VpGrPwAAAABSbXo/AAAAAAq5jD9rf40/0ZARP5OoFz9uXSA/fh+kvjfpxL521S4/ILcSP8bmJT+uGRk/kF9nv8XY276yQqC/kfKMv5R0lGIu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAEAAAGUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVDQYAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLFoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUKABQAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC6UYY/AAAAAGNoiT8AAAAAJYcWPQAAAACk83o/AAAAAAepgD8AAAAAB2XIuwAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACA1VeGPwAAAADbt4M/AAAAAJpoeTwAAAAA4TqBPwAAAAAPyYQ/AAAAADx3vjwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgE7reT8AAAAAqdh1PwAAAAC25IE9AAAAACwrdD8AAAAAyEaDPwAAAAD2yY69AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBO5nw/AAAAALutcj8AAAAAXTHlPQAAAADgBXE/AAAAAIQpfj8AAAAA+X1KvAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAPSR/PwAAAABSMII/AAAAAO0NGbwAAAAATeqDPwAAAAABbXM/AAAAAOUp4LwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgDjXbD8AAAAA4YGAPwAAAADluYa9AAAAALP5iD8AAAAAsOt7PwAAAADWRt29AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDCVHo/AAAAAMntfz8AAAAANgjUPQAAAABdAXo/AAAAAAtvhz8AAAAAAcbMvQAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACA5UB/PwAAAACArIE/AAAAAIre2z0AAAAACpp1PwAAAABTu4g/AAAAAHCdtrsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgMRmbz8AAAAAas14PwAAAAAWpbs9AAAAALRJdj8AAAAATLOIPwAAAAAGB5u9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICWE3s/AAAAAAP+hz8AAAAAN5TjvQAAAAA+P4I/AAAAAP6qgD8AAAAA23GPPQAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAjJeBPwAAAABxZYM/AAAAADlFhj0AAAAAHzKFPwAAAAAEpIU/AAAAAJEWZb0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgKcKgz8AAAAAGxOEPwAAAACrF2q9AAAAAEW9fT8AAAAAHvGGPwAAAACGrwg9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIACSYA/AAAAAEnzhT8AAAAAh2vFPQAAAABW7XM/AAAAAANGeT8AAAAAk6DCvQAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAebCDPwAAAAABFIU/AAAAAD6Z3rwAAAAAIUqBPwAAAADvW4Q/AAAAALHakD0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgDUJhz8AAAAAFqmAPwAAAADSSe88AAAAALmhbT8AAAAA8YRtPwAAAABoOkO7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBXWH8/AAAAAAUagz8AAAAABr2UPQAAAAA2PW8/AAAAABSLiD8AAAAAlZ7fvAAAAAAAAAAAAAAAAJR0lGIu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": 4, "_current_progress_remaining": -1.048, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQDyTxmTTvy+MAWyUSxaMAXSUR0A5awUxmCiAdX2UKGgGR0BErfx+az/qaAdLI2gIR0A5b0ngHeJpdX2UKGgGR0AwwOSntOVPaAdLC2gIR0A5c/fwZwXJdX2UKGgGR0A0jy+HrQgLaAdLDmgIR0A5fO32EkB0dX2UKGgGR0A3kHck+otMaAdLEWgIR0A5fWzWwu/UdX2UKGgGR0AzBiQDFId3aAdLC2gIR0A5gU+s5n14dX2UKGgGR0Az313t8eCDaAdLE2gIR0A5hMsH0K7adX2UKGgGR0AugIznA6+4aAdLEGgIR0A5jJQLux8ldX2UKGgGR0Aw5qXnhbW3aAdLDWgIR0A5kcZtNzsAdX2UKGgGR0A2CozeoDPoaAdLD2gIR0A5lAiml67edX2UKGgGR0BAJzi83++/aAdLG2gIR0A5mxWkrPMTdX2UKGgGR0A8bKyv9tMxaAdLFmgIR0A5m0QbuMMrdX2UKGgGR0BAjsuOCGvfaAdLIGgIR0A5m40uUUwjdX2UKGgGR0A0ll7MPjGUaAdLD2gIR0A5nBqKxcFAdX2UKGgGR0Aw6Sh8IAwPaAdLCmgIR0A5q/vv0AcUdX2UKGgGR0A6cEYO2AoYaAdLFWgIR0A5s/JNj9XLdX2UKGgGR0Ayl2BreqJeaAdLDmgIR0A5uI2OyVv/dX2UKGgGR0AyYs5GSZBtaAdLDGgIR0A5v5hz/6wddX2UKGgGR0A/7L7oB7u2aAdLGmgIR0A5wP4EfT1DdX2UKGgGR0A8z0IkZ75VaAdLFWgIR0A5yYMvysjndX2UKGgGR0AyWApazNUwaAdLDGgIR0A5zaaCtihGdX2UKGgGR0AyHlpXZGrkaAdLDWgIR0A50jRUm2LHdX2UKGgGR0A4/tEXtShraAdLEmgIR0A50nAIppevdX2UKGgGR0AwVJLuhK15aAdLC2gIR0A53A3DNyHVdX2UKGgGR0AyxCbtqpLmaAdLEGgIR0A531gH/tIDdX2UKGgGR0A7YPQOWjXWaAdLGWgIR0A54JoTPBzndX2UKGgGR0AxPWzWwu/UaAdLCmgIR0A55CJXQtz0dX2UKGgGR0A6GI7/4qPPaAdLGWgIR0A56IKtxMnJdX2UKGgGR0A50uSwGGEgaAdLFmgIR0A58GdZq20BdX2UKGgGR0A15zQNTcZcaAdLD2gIR0A59Jz1bqyGdX2UKGgGR0BAufQjUutfaAdLIWgIR0A5+HHFPznSdX2UKGgGR0A9vgF5fMOgaAdLGWgIR0A6BOTJQtSRdX2UKGgGR0AyR+tbLU1AaAdLDGgIR0A6BbpeNT99dX2UKGgGR0AzjIClrM1TaAdLDmgIR0A6CZn+Q2dedX2UKGgGR0AxDyY5T6zmaAdLC2gIR0A6EvDP4VRDdX2UKGgGR0A4Ac8kleF+aAdLEGgIR0A6FxO+IuXedX2UKGgGR0A2E+ZPVNHpaAdLEWgIR0A6JufEn9ehdX2UKGgGR0A3vDdgv115aAdLEmgIR0A6J/oJRfnfdX2UKGgGR0A8kh4dIXj3aAdLGmgIR0A6LxyGSIP9dX2UKGgGR0A1/MwUQCjlaAdLEmgIR0A6NMYMvyskdX2UKGgGR0A8wF7D2rXEaAdLHGgIR0A6QBK+SKWLdX2UKGgGR0A06dZq20AtaAdLDmgIR0A6QHiWE9McdX2UKGgGR0Au7QMx46fbaAdLC2gIR0A6RHcUM5OrdX2UKGgGR0AyX0hePaL5aAdLE2gIR0A6RMVUMoc8dX2UKGgGR0A+ZgzxgAp8aAdLH2gIR0A6RVCojv/jdX2UKGgGR0A2IvR7Z39raAdLFGgIR0A6RXmvGIbgdX2UKGgGR0A1PdnTRYzSaAdLD2gIR0A6SI0ZWJaadX2UKGgGR0A00RcNYr8SaAdLEGgIR0A6SRujynUEdX2UKGgGR0AwZLUTcqOMaAdLCWgIR0A6Vb8FY+0PdX2UKGgGR0A+d/JeVs1saAdLHmgIR0A6X6yjYZl4dX2UKGgGR0A+5yo4uK4yaAdLGWgIR0A6Yppvgm7bdX2UKGgGR0AyEUEgW8AaaAdLDGgIR0A6axVQyhzvdX2UKGgGR0BD17tqpLmIaAdLM2gIR0A6bgRsdkrgdX2UKGgGR0Av0cOLBKtgaAdLCWgIR0A6bro4dZJTdX2UKGgGR0A5kvy9VWCFaAdLEmgIR0A6dyZKFqSHdX2UKGgGR0AxOMHbAUL2aAdLC2gIR0A6d9ZA6dUbdX2UKGgGR0AyNcSoOx0NaAdLDGgIR0A6fGlANXo1dX2UKGgGR0A1XuJUHY6GaAdLFGgIR0A6gHBUJfICdX2UKGgGR0AsOlHjIaLoaAdLCWgIR0A6i2St/4IsdX2UKGgGR0A0wFaSs8xLaAdLDmgIR0A6kz1K5CnhdX2UKGgGR0AzNBJ7LMcIaAdLDGgIR0A6oy31BdD6dX2UKGgGR0A8HJSzgMtsaAdLF2gIR0A6p0oScslLdX2UKGgGR0BBVbayrxRVaAdLImgIR0A6p77bcoH+dX2UKGgGR0A6eLvCuU2UaAdLFmgIR0A6qz3yqdYodX2UKGgGR0A8D4cFQl8gaAdLF2gIR0A6r3gUDdP+dX2UKGgGR0AwlcinpB5YaAdLCWgIR0A6uzRQaaTfdX2UKGgGR0A1TSaVlf7aaAdLEGgIR0A6u5jH4oJBdX2UKGgGR0A3CxPfsNUgaAdLEWgIR0A6xImPYFq0dX2UKGgGR0A+0e+23KB/aAdLGmgIR0A60RUWEbo9dX2UKGgGR0A7SeruIAOsaAdLIWgIR0A61d8iOeasdX2UKGgGR0A+4SYgJTl1aAdLGmgIR0A62qSX+l0pdX2UKGgGR0A+QRbr1M/RaAdLGmgIR0A63ZkCmuTzdX2UKGgGR0A17YukDZDiaAdLE2gIR0A63eVLSNOudX2UKGgGR0A71iRGMGX5aAdLFmgIR0A634Kx9oexdX2UKGgGR0A0IEYO2AoYaAdLDWgIR0A64wiaAnUldX2UKGgGR0A5jYWcjJMhaAdLEmgIR0A674s3AEdOdX2UKGgGR0A3cIdELH+7aAdLE2gIR0A6+Lr5ZbIMdX2UKGgGR0A0lBkI5YHPaAdLD2gIR0A6/GTLW7OFdX2UKGgGR0A5nOcUdq+KaAdLE2gIR0A7ARZlnRLLdX2UKGgGR0AtgMNtqHoHaAdLCGgIR0A7Bcp9ZzPsdX2UKGgGR0BF5Sq2jO9naAdLLWgIR0A7BlVcUucudX2UKGgGR0A2oXQtz0YkaAdLEGgIR0A7CujASFoMdX2UKGgGR0AxZH31zySWaAdLDWgIR0A7C3sXzlLfdX2UKGgGR0BBpIXCTEBKaAdLI2gIR0A7D09yLhrFdX2UKGgGR0AzyeHSF49paAdLDWgIR0A7D7UXpGF0dX2UKGgGR0A0tCI1tO2zaAdLDWgIR0A7Fv8ZUDMedX2UKGgGR0AzlNAkcCHRaAdLD2gIR0A7Hv8qFyq/dX2UKGgGR0A4PgzP8hs7aAdLEWgIR0A7JIiTt9hJdX2UKGgGR0Aygvy9VWCFaAdLDmgIR0A7LPyCnP3SdX2UKGgGR0Awh7fpD/lyaAdLD2gIR0A7PNc4YJmedX2UKGgGR0BAN7Egntv5aAdLI2gIR0A7PX531SOzdX2UKGgGR0A1DdNnGsFMaAdLEGgIR0A7PdtEXtSidX2UKGgGR0AuXyJ9AooeaAdLCGgIR0A7QR5kbxVidX2UKGgGR0A/+BKL876paAdLGWgIR0A7SwIMSbpedX2UKGgGR0A11lP8AJb/aAdLEWgIR0A7To6CDmKZdX2UKGgGR0A/OmDDjzZpaAdLI2gIR0A7UjxkNFz/dX2UKGgGR0A23c7yQPqcaAdLEGgIR0A7U0se4kNXdX2UKGgGR0AyiIHkcS5BaAdLC2gIR0A7U+yZ8a4udX2UKGgGR0A3t0vGp++eaAdLEmgIR0A7WD4gzP8idX2UKGgGR0A29R4QjD8+aAdLEWgIR0A7WImPYFq0dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 20, "n_steps": 512, "gamma": 0.99, "gae_lambda": 0.92, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 20, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/ZmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-Walker2DBulletEnv-v0.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:389dfb80412e5232b61c0703411f17138d3ba5838ff21ff5cb3dbf9a71eac46d
|
3 |
+
size 1794777
|
ppo-Walker2DBulletEnv-v0/data
CHANGED
@@ -4,19 +4,19 @@
|
|
4 |
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
14 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
15 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
16 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
17 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
-
"_abc_impl": "<_abc_data object at
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {
|
@@ -66,11 +66,11 @@
|
|
66 |
},
|
67 |
"n_envs": 16,
|
68 |
"num_timesteps": 8192,
|
69 |
-
"_total_timesteps":
|
70 |
"_num_timesteps_at_start": 0,
|
71 |
"seed": null,
|
72 |
"action_noise": null,
|
73 |
-
"start_time":
|
74 |
"learning_rate": 3e-05,
|
75 |
"tensorboard_log": "./tensorboard",
|
76 |
"lr_schedule": {
|
@@ -79,23 +79,23 @@
|
|
79 |
},
|
80 |
"_last_obs": {
|
81 |
":type:": "<class 'numpy.ndarray'>",
|
82 |
-
":serialized:": "gASVDQYAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLFoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////
|
83 |
},
|
84 |
"_last_episode_starts": {
|
85 |
":type:": "<class 'numpy.ndarray'>",
|
86 |
-
":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////
|
87 |
},
|
88 |
"_last_original_obs": {
|
89 |
":type:": "<class 'numpy.ndarray'>",
|
90 |
-
":serialized:": "gASVDQYAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLFoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUKABQAAAAAAAAAAAAAAAIA/
|
91 |
},
|
92 |
"_episode_num": 0,
|
93 |
"use_sde": true,
|
94 |
"sde_sample_freq": 4,
|
95 |
-
"_current_progress_remaining": -
|
96 |
"ep_info_buffer": {
|
97 |
":type:": "<class 'collections.deque'>",
|
98 |
-
":serialized:": "
|
99 |
},
|
100 |
"ep_success_buffer": {
|
101 |
":type:": "<class 'collections.deque'>",
|
|
|
4 |
":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fc3554fa680>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fc3554fa710>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fc3554fa7a0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fc3554fa830>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fc3554fa8c0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fc3554fa950>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fc3554fa9e0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fc3554faa70>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fc3554fab00>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fc3554fab90>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fc3554fac20>",
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fc3555468d0>"
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {
|
|
|
66 |
},
|
67 |
"n_envs": 16,
|
68 |
"num_timesteps": 8192,
|
69 |
+
"_total_timesteps": 4000,
|
70 |
"_num_timesteps_at_start": 0,
|
71 |
"seed": null,
|
72 |
"action_noise": null,
|
73 |
+
"start_time": 1657882489.70774,
|
74 |
"learning_rate": 3e-05,
|
75 |
"tensorboard_log": "./tensorboard",
|
76 |
"lr_schedule": {
|
|
|
79 |
},
|
80 |
"_last_obs": {
|
81 |
":type:": "<class 'numpy.ndarray'>",
|
82 |
+
":serialized:": "gASVDQYAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLFoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUKABQAAral2vgAAAACipok4ZL/lPwAAAABgzSA+AAAAANG5qr4gF469jew6vzuxp78/Fag/1SZQP1Gd/T4C9r2/RAD9vpm2IT+Joww/UWchQNNmRj6Qd0w/0ntoP2YpgD8AAAAAoqaJOEkIiD8AAAAAFqMqPwAAAACFVYc/uY7oPn0qpzyc9T4/XbSvPm24XL+lSoO+DMf/PmLfDb9V6S0/P4AEQL/Njb9V9YO/skKgv5HyjL+dZRU/AAAAAKKmiTguTEM+AAAAAEEHzjwAAAAA2VVJPxVDXT84tA4/DZoyvvxLR76AQ/S9h4CePwQ7Uj9AIQY/+NLBPkanv71eUHW+IRQhv5B3TD+R8oy/9+2PvwAAAACipok41x6zQAAAAADBmdXAAAAAAKslwL92zTzAfuLgwJFoQD7+op9Au76zPy87dsAjzk/A5kHiwK3KHz+vqqJA1kI4QP+BPMCyQqC/0ntoPxsNqj4AAAAAoqaJOLKGYz8AAAAAz4qAPwAAAAAUMWM/fUJXP1FwhD+HRXU+abViv2XfgD0O9J4/NLpiP1J/Cz/YhlQ/imQaP0pEt7/0NM+/kHdMP5HyjL/QivU7AAAAAKKmiTgn9yW+AAAAAOBWOD4AAAAA8pgCv1yPb79Nriy/zSk1P3NOHD9ZHzS/E0WCvsqxAL98inW/4mQAPbfoqD8LZKm+RbfevpB3TD/Se2g/l9FpPwAAAACipok4b3cEvwAAAACrNRU+AAAAAHfvRD/0kgo/n68lvzvtIz+soe89POw+v+ipEj9r8So+rrpUv+vsJT9R3gg/c/4SvwRqFr6yQqC/kfKMv5tqjr0AAAAAoqaJOOnXWb8AAAAArcqHvQAAAADKpKO9jFWaPkHdjT6rTC+/Fq+Cv0/uHz/VqKI+/2TxPkj3Vr51xL6+nwSBPjguJr4lFAM/kHdMP9J7aD+553Q+AAAAAKKmiThQHw6/AAAAAMiREz8AAAAAZ61EP6tgOD+j7aA/BKoEPCgGGMD73gI/KX8xQAo4YT9UKBE/gp2VvqcQEb9LnpE/ARTEvJB3TD+R8oy/+kiAPwAAAACipok4CawfPwAAAADNsDI/AAAAALCzhT+p0oA/OyNBvoVJID9MOVs/c6iMv/srBr+xA3M/0/MJvmgHVz+uGRk/hzExvj2bMT6yQqC/kfKMv/Bikz4AAAAAoqaJOC/pUz8AAAAAlq2FPwAAAABArp8+n0MMvdWQpT5tVwc/PV1RPxUthr4lNc6+4HC9PUGvAj+GIRQ/UqSuPjGmIr8i+0w+kHdMP9J7aD+k/lI/AAAAAKKmiThDsVA/AAAAANi5Pj4AAAAAwuSLP1ThGD9FdhM/ocISP4uhDD1TBQW/VYyTPzXYYD/ilhI/GP3QPtROkj3F8GE8WvY2P7JCoL+R8oy/1FmCPwAAAACipok4VpGrPwAAAABSbXo/AAAAAAq5jD+dd5A/0ZARP2mQUD9uXSA/xjWXvzfpxL6BvY0/ILcSPyeODD+uGRk/FLsUv8XY276yQqC/kfKMvxxBgD8AAAAAoqaJOK8cHj8AAAAAgTo0PwAAAAAheIY/XUgvP3aHSb3X6XQ/bl0gP6cCgb8bcAG+B9CCP8sKG72F90U/4xgZP8GDJb9eRV++skKgv5HyjL+PGYM+AAAAAKKmiTjX9ac+AAAAAM/odT8AAAAAd5MEPxmaPT/sFAA/6bw+Pj/tZj9p3NK+EKYgv1pKIT+KV08/Z/seP6lMUz3093q/kfA/vpB3TD/Se2g/1FmCPwAAAACipok4VpGrPwAAAABSbXo/AAAAAAq5jD9rf40/0ZARP5OoFz9uXSA/fh+kvjfpxL521S4/ILcSP8bmJT+uGRk/kF9nv8XY276yQqC/kfKMv5R0lGIu"
|
83 |
},
|
84 |
"_last_episode_starts": {
|
85 |
":type:": "<class 'numpy.ndarray'>",
|
86 |
+
":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAEAAAGUdJRiLg=="
|
87 |
},
|
88 |
"_last_original_obs": {
|
89 |
":type:": "<class 'numpy.ndarray'>",
|
90 |
+
":serialized:": "gASVDQYAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLFoaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUKABQAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC6UYY/AAAAAGNoiT8AAAAAJYcWPQAAAACk83o/AAAAAAepgD8AAAAAB2XIuwAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACA1VeGPwAAAADbt4M/AAAAAJpoeTwAAAAA4TqBPwAAAAAPyYQ/AAAAADx3vjwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgE7reT8AAAAAqdh1PwAAAAC25IE9AAAAACwrdD8AAAAAyEaDPwAAAAD2yY69AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBO5nw/AAAAALutcj8AAAAAXTHlPQAAAADgBXE/AAAAAIQpfj8AAAAA+X1KvAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAPSR/PwAAAABSMII/AAAAAO0NGbwAAAAATeqDPwAAAAABbXM/AAAAAOUp4LwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgDjXbD8AAAAA4YGAPwAAAADluYa9AAAAALP5iD8AAAAAsOt7PwAAAADWRt29AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDCVHo/AAAAAMntfz8AAAAANgjUPQAAAABdAXo/AAAAAAtvhz8AAAAAAcbMvQAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACA5UB/PwAAAACArIE/AAAAAIre2z0AAAAACpp1PwAAAABTu4g/AAAAAHCdtrsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgMRmbz8AAAAAas14PwAAAAAWpbs9AAAAALRJdj8AAAAATLOIPwAAAAAGB5u9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICWE3s/AAAAAAP+hz8AAAAAN5TjvQAAAAA+P4I/AAAAAP6qgD8AAAAA23GPPQAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAjJeBPwAAAABxZYM/AAAAADlFhj0AAAAAHzKFPwAAAAAEpIU/AAAAAJEWZb0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgKcKgz8AAAAAGxOEPwAAAACrF2q9AAAAAEW9fT8AAAAAHvGGPwAAAACGrwg9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIACSYA/AAAAAEnzhT8AAAAAh2vFPQAAAABW7XM/AAAAAANGeT8AAAAAk6DCvQAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAebCDPwAAAAABFIU/AAAAAD6Z3rwAAAAAIUqBPwAAAADvW4Q/AAAAALHakD0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgDUJhz8AAAAAFqmAPwAAAADSSe88AAAAALmhbT8AAAAA8YRtPwAAAABoOkO7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBXWH8/AAAAAAUagz8AAAAABr2UPQAAAAA2PW8/AAAAABSLiD8AAAAAlZ7fvAAAAAAAAAAAAAAAAJR0lGIu"
|
91 |
},
|
92 |
"_episode_num": 0,
|
93 |
"use_sde": true,
|
94 |
"sde_sample_freq": 4,
|
95 |
+
"_current_progress_remaining": -1.048,
|
96 |
"ep_info_buffer": {
|
97 |
":type:": "<class 'collections.deque'>",
|
98 |
+
":serialized:": "gASV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQDyTxmTTvy+MAWyUSxaMAXSUR0A5awUxmCiAdX2UKGgGR0BErfx+az/qaAdLI2gIR0A5b0ngHeJpdX2UKGgGR0AwwOSntOVPaAdLC2gIR0A5c/fwZwXJdX2UKGgGR0A0jy+HrQgLaAdLDmgIR0A5fO32EkB0dX2UKGgGR0A3kHck+otMaAdLEWgIR0A5fWzWwu/UdX2UKGgGR0AzBiQDFId3aAdLC2gIR0A5gU+s5n14dX2UKGgGR0Az313t8eCDaAdLE2gIR0A5hMsH0K7adX2UKGgGR0AugIznA6+4aAdLEGgIR0A5jJQLux8ldX2UKGgGR0Aw5qXnhbW3aAdLDWgIR0A5kcZtNzsAdX2UKGgGR0A2CozeoDPoaAdLD2gIR0A5lAiml67edX2UKGgGR0BAJzi83++/aAdLG2gIR0A5mxWkrPMTdX2UKGgGR0A8bKyv9tMxaAdLFmgIR0A5m0QbuMMrdX2UKGgGR0BAjsuOCGvfaAdLIGgIR0A5m40uUUwjdX2UKGgGR0A0ll7MPjGUaAdLD2gIR0A5nBqKxcFAdX2UKGgGR0Aw6Sh8IAwPaAdLCmgIR0A5q/vv0AcUdX2UKGgGR0A6cEYO2AoYaAdLFWgIR0A5s/JNj9XLdX2UKGgGR0Ayl2BreqJeaAdLDmgIR0A5uI2OyVv/dX2UKGgGR0AyYs5GSZBtaAdLDGgIR0A5v5hz/6wddX2UKGgGR0A/7L7oB7u2aAdLGmgIR0A5wP4EfT1DdX2UKGgGR0A8z0IkZ75VaAdLFWgIR0A5yYMvysjndX2UKGgGR0AyWApazNUwaAdLDGgIR0A5zaaCtihGdX2UKGgGR0AyHlpXZGrkaAdLDWgIR0A50jRUm2LHdX2UKGgGR0A4/tEXtShraAdLEmgIR0A50nAIppevdX2UKGgGR0AwVJLuhK15aAdLC2gIR0A53A3DNyHVdX2UKGgGR0AyxCbtqpLmaAdLEGgIR0A531gH/tIDdX2UKGgGR0A7YPQOWjXWaAdLGWgIR0A54JoTPBzndX2UKGgGR0AxPWzWwu/UaAdLCmgIR0A55CJXQtz0dX2UKGgGR0A6GI7/4qPPaAdLGWgIR0A56IKtxMnJdX2UKGgGR0A50uSwGGEgaAdLFmgIR0A58GdZq20BdX2UKGgGR0A15zQNTcZcaAdLD2gIR0A59Jz1bqyGdX2UKGgGR0BAufQjUutfaAdLIWgIR0A5+HHFPznSdX2UKGgGR0A9vgF5fMOgaAdLGWgIR0A6BOTJQtSRdX2UKGgGR0AyR+tbLU1AaAdLDGgIR0A6BbpeNT99dX2UKGgGR0AzjIClrM1TaAdLDmgIR0A6CZn+Q2dedX2UKGgGR0AxDyY5T6zmaAdLC2gIR0A6EvDP4VRDdX2UKGgGR0A4Ac8kleF+aAdLEGgIR0A6FxO+IuXedX2UKGgGR0A2E+ZPVNHpaAdLEWgIR0A6JufEn9ehdX2UKGgGR0A3vDdgv115aAdLEmgIR0A6J/oJRfnfdX2UKGgGR0A8kh4dIXj3aAdLGmgIR0A6LxyGSIP9dX2UKGgGR0A1/MwUQCjlaAdLEmgIR0A6NMYMvyskdX2UKGgGR0A8wF7D2rXEaAdLHGgIR0A6QBK+SKWLdX2UKGgGR0A06dZq20AtaAdLDmgIR0A6QHiWE9McdX2UKGgGR0Au7QMx46fbaAdLC2gIR0A6RHcUM5OrdX2UKGgGR0AyX0hePaL5aAdLE2gIR0A6RMVUMoc8dX2UKGgGR0A+ZgzxgAp8aAdLH2gIR0A6RVCojv/jdX2UKGgGR0A2IvR7Z39raAdLFGgIR0A6RXmvGIbgdX2UKGgGR0A1PdnTRYzSaAdLD2gIR0A6SI0ZWJaadX2UKGgGR0A00RcNYr8SaAdLEGgIR0A6SRujynUEdX2UKGgGR0AwZLUTcqOMaAdLCWgIR0A6Vb8FY+0PdX2UKGgGR0A+d/JeVs1saAdLHmgIR0A6X6yjYZl4dX2UKGgGR0A+5yo4uK4yaAdLGWgIR0A6Yppvgm7bdX2UKGgGR0AyEUEgW8AaaAdLDGgIR0A6axVQyhzvdX2UKGgGR0BD17tqpLmIaAdLM2gIR0A6bgRsdkrgdX2UKGgGR0Av0cOLBKtgaAdLCWgIR0A6bro4dZJTdX2UKGgGR0A5kvy9VWCFaAdLEmgIR0A6dyZKFqSHdX2UKGgGR0AxOMHbAUL2aAdLC2gIR0A6d9ZA6dUbdX2UKGgGR0AyNcSoOx0NaAdLDGgIR0A6fGlANXo1dX2UKGgGR0A1XuJUHY6GaAdLFGgIR0A6gHBUJfICdX2UKGgGR0AsOlHjIaLoaAdLCWgIR0A6i2St/4IsdX2UKGgGR0A0wFaSs8xLaAdLDmgIR0A6kz1K5CnhdX2UKGgGR0AzNBJ7LMcIaAdLDGgIR0A6oy31BdD6dX2UKGgGR0A8HJSzgMtsaAdLF2gIR0A6p0oScslLdX2UKGgGR0BBVbayrxRVaAdLImgIR0A6p77bcoH+dX2UKGgGR0A6eLvCuU2UaAdLFmgIR0A6qz3yqdYodX2UKGgGR0A8D4cFQl8gaAdLF2gIR0A6r3gUDdP+dX2UKGgGR0AwlcinpB5YaAdLCWgIR0A6uzRQaaTfdX2UKGgGR0A1TSaVlf7aaAdLEGgIR0A6u5jH4oJBdX2UKGgGR0A3CxPfsNUgaAdLEWgIR0A6xImPYFq0dX2UKGgGR0A+0e+23KB/aAdLGmgIR0A60RUWEbo9dX2UKGgGR0A7SeruIAOsaAdLIWgIR0A61d8iOeasdX2UKGgGR0A+4SYgJTl1aAdLGmgIR0A62qSX+l0pdX2UKGgGR0A+QRbr1M/RaAdLGmgIR0A63ZkCmuTzdX2UKGgGR0A17YukDZDiaAdLE2gIR0A63eVLSNOudX2UKGgGR0A71iRGMGX5aAdLFmgIR0A634Kx9oexdX2UKGgGR0A0IEYO2AoYaAdLDWgIR0A64wiaAnUldX2UKGgGR0A5jYWcjJMhaAdLEmgIR0A674s3AEdOdX2UKGgGR0A3cIdELH+7aAdLE2gIR0A6+Lr5ZbIMdX2UKGgGR0A0lBkI5YHPaAdLD2gIR0A6/GTLW7OFdX2UKGgGR0A5nOcUdq+KaAdLE2gIR0A7ARZlnRLLdX2UKGgGR0AtgMNtqHoHaAdLCGgIR0A7Bcp9ZzPsdX2UKGgGR0BF5Sq2jO9naAdLLWgIR0A7BlVcUucudX2UKGgGR0A2oXQtz0YkaAdLEGgIR0A7CujASFoMdX2UKGgGR0AxZH31zySWaAdLDWgIR0A7C3sXzlLfdX2UKGgGR0BBpIXCTEBKaAdLI2gIR0A7D09yLhrFdX2UKGgGR0AzyeHSF49paAdLDWgIR0A7D7UXpGF0dX2UKGgGR0A0tCI1tO2zaAdLDWgIR0A7Fv8ZUDMedX2UKGgGR0AzlNAkcCHRaAdLD2gIR0A7Hv8qFyq/dX2UKGgGR0A4PgzP8hs7aAdLEWgIR0A7JIiTt9hJdX2UKGgGR0Aygvy9VWCFaAdLDmgIR0A7LPyCnP3SdX2UKGgGR0Awh7fpD/lyaAdLD2gIR0A7PNc4YJmedX2UKGgGR0BAN7Egntv5aAdLI2gIR0A7PX531SOzdX2UKGgGR0A1DdNnGsFMaAdLEGgIR0A7PdtEXtSidX2UKGgGR0AuXyJ9AooeaAdLCGgIR0A7QR5kbxVidX2UKGgGR0A/+BKL876paAdLGWgIR0A7SwIMSbpedX2UKGgGR0A11lP8AJb/aAdLEWgIR0A7To6CDmKZdX2UKGgGR0A/OmDDjzZpaAdLI2gIR0A7UjxkNFz/dX2UKGgGR0A23c7yQPqcaAdLEGgIR0A7U0se4kNXdX2UKGgGR0AyiIHkcS5BaAdLC2gIR0A7U+yZ8a4udX2UKGgGR0A3t0vGp++eaAdLEmgIR0A7WD4gzP8idX2UKGgGR0A29R4QjD8+aAdLEWgIR0A7WImPYFq0dWUu"
|
99 |
},
|
100 |
"ep_success_buffer": {
|
101 |
":type:": "<class 'collections.deque'>",
|
ppo-Walker2DBulletEnv-v0/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2d52136ee1c6e892ce7fd8859fc6f7309a9d2455e8dfecd45246a2cd39b1093f
|
3 |
+
size 1183984
|
ppo-Walker2DBulletEnv-v0/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 591102
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e974180ab3d9fa2f3711d7740146204dd59f4c35c76a9b987d2a0be87002b354
|
3 |
size 591102
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:779b8f7e84e830f6833f476c7a29980ebedcdf232369f4bed071ce3eeff46cf1
|
3 |
+
size 1134404
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 29.512755450606345, "std_reward": 2.927985158998455, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-07-15T10:56:41.625576"}
|
vec_normalize.pkl
CHANGED
Binary files a/vec_normalize.pkl and b/vec_normalize.pkl differ
|
|