Training completed!
Browse files
README.md
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: vinai/phobert-base-v2
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
model-index:
|
6 |
+
- name: CS505-Classifier-T4_predictLabel_a1_v6
|
7 |
+
results: []
|
8 |
+
---
|
9 |
+
|
10 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
+
should probably proofread and complete it, then remove this comment. -->
|
12 |
+
|
13 |
+
# CS505-Classifier-T4_predictLabel_a1_v6
|
14 |
+
|
15 |
+
This model is a fine-tuned version of [vinai/phobert-base-v2](https://huggingface.co/vinai/phobert-base-v2) on the None dataset.
|
16 |
+
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 0.0014
|
18 |
+
|
19 |
+
## Model description
|
20 |
+
|
21 |
+
More information needed
|
22 |
+
|
23 |
+
## Intended uses & limitations
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Training and evaluation data
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training procedure
|
32 |
+
|
33 |
+
### Training hyperparameters
|
34 |
+
|
35 |
+
The following hyperparameters were used during training:
|
36 |
+
- learning_rate: 5e-05
|
37 |
+
- train_batch_size: 32
|
38 |
+
- eval_batch_size: 8
|
39 |
+
- seed: 42
|
40 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
41 |
+
- lr_scheduler_type: linear
|
42 |
+
- num_epochs: 50
|
43 |
+
|
44 |
+
### Training results
|
45 |
+
|
46 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
47 |
+
|:-------------:|:-----:|:----:|:---------------:|
|
48 |
+
| No log | 0.98 | 48 | 0.6632 |
|
49 |
+
| No log | 1.96 | 96 | 0.3136 |
|
50 |
+
| No log | 2.94 | 144 | 0.2453 |
|
51 |
+
| No log | 3.92 | 192 | 0.1673 |
|
52 |
+
| No log | 4.9 | 240 | 0.1249 |
|
53 |
+
| No log | 5.88 | 288 | 0.0850 |
|
54 |
+
| No log | 6.86 | 336 | 0.0718 |
|
55 |
+
| No log | 7.84 | 384 | 0.0576 |
|
56 |
+
| No log | 8.82 | 432 | 0.0567 |
|
57 |
+
| No log | 9.8 | 480 | 0.0530 |
|
58 |
+
| 0.2878 | 10.78 | 528 | 0.0307 |
|
59 |
+
| 0.2878 | 11.76 | 576 | 0.0376 |
|
60 |
+
| 0.2878 | 12.73 | 624 | 0.0170 |
|
61 |
+
| 0.2878 | 13.71 | 672 | 0.0195 |
|
62 |
+
| 0.2878 | 14.69 | 720 | 0.0111 |
|
63 |
+
| 0.2878 | 15.67 | 768 | 0.0131 |
|
64 |
+
| 0.2878 | 16.65 | 816 | 0.0109 |
|
65 |
+
| 0.2878 | 17.63 | 864 | 0.0073 |
|
66 |
+
| 0.2878 | 18.61 | 912 | 0.0043 |
|
67 |
+
| 0.2878 | 19.59 | 960 | 0.0032 |
|
68 |
+
| 0.0238 | 20.57 | 1008 | 0.0067 |
|
69 |
+
| 0.0238 | 21.55 | 1056 | 0.0027 |
|
70 |
+
| 0.0238 | 22.53 | 1104 | 0.0025 |
|
71 |
+
| 0.0238 | 23.51 | 1152 | 0.0025 |
|
72 |
+
| 0.0238 | 24.49 | 1200 | 0.0022 |
|
73 |
+
| 0.0238 | 25.47 | 1248 | 0.0022 |
|
74 |
+
| 0.0238 | 26.45 | 1296 | 0.0021 |
|
75 |
+
| 0.0238 | 27.43 | 1344 | 0.0020 |
|
76 |
+
| 0.0238 | 28.41 | 1392 | 0.0019 |
|
77 |
+
| 0.0238 | 29.39 | 1440 | 0.0019 |
|
78 |
+
| 0.0238 | 30.37 | 1488 | 0.0018 |
|
79 |
+
| 0.0036 | 31.35 | 1536 | 0.0018 |
|
80 |
+
| 0.0036 | 32.33 | 1584 | 0.0018 |
|
81 |
+
| 0.0036 | 33.31 | 1632 | 0.0017 |
|
82 |
+
| 0.0036 | 34.29 | 1680 | 0.0017 |
|
83 |
+
| 0.0036 | 35.27 | 1728 | 0.0016 |
|
84 |
+
| 0.0036 | 36.24 | 1776 | 0.0017 |
|
85 |
+
| 0.0036 | 37.22 | 1824 | 0.0016 |
|
86 |
+
| 0.0036 | 38.2 | 1872 | 0.0016 |
|
87 |
+
| 0.0036 | 39.18 | 1920 | 0.0015 |
|
88 |
+
| 0.0036 | 40.16 | 1968 | 0.0015 |
|
89 |
+
| 0.0022 | 41.14 | 2016 | 0.0015 |
|
90 |
+
| 0.0022 | 42.12 | 2064 | 0.0015 |
|
91 |
+
| 0.0022 | 43.1 | 2112 | 0.0015 |
|
92 |
+
| 0.0022 | 44.08 | 2160 | 0.0015 |
|
93 |
+
| 0.0022 | 45.06 | 2208 | 0.0015 |
|
94 |
+
| 0.0022 | 46.04 | 2256 | 0.0015 |
|
95 |
+
| 0.0022 | 47.02 | 2304 | 0.0015 |
|
96 |
+
| 0.0022 | 48.0 | 2352 | 0.0015 |
|
97 |
+
| 0.0022 | 48.98 | 2400 | 0.0014 |
|
98 |
+
| 0.0022 | 49.96 | 2448 | 0.0014 |
|
99 |
+
|
100 |
+
|
101 |
+
### Framework versions
|
102 |
+
|
103 |
+
- Transformers 4.38.2
|
104 |
+
- Pytorch 2.1.0+cu121
|
105 |
+
- Datasets 2.18.0
|
106 |
+
- Tokenizers 0.15.2
|