File size: 2,022 Bytes
81be756
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
base_model: vinai/phobert-base-v2
tags:
- generated_from_trainer
model-index:
- name: CS505-L2T_AP2_filter1_CSI-PhoBERT
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# CS505-L2T_AP2_filter1_CSI-PhoBERT

This model is a fine-tuned version of [vinai/phobert-base-v2](https://huggingface.co/vinai/phobert-base-v2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0019

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 41
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log        | 1.0   | 318  | 0.1545          |
| 0.2771        | 1.99  | 636  | 0.1782          |
| 0.2771        | 2.99  | 954  | 0.0712          |
| 0.1442        | 3.99  | 1272 | 0.0415          |
| 0.0749        | 4.98  | 1590 | 0.0250          |
| 0.0749        | 5.98  | 1908 | 0.0213          |
| 0.0475        | 6.98  | 2226 | 0.0119          |
| 0.0273        | 7.97  | 2544 | 0.0101          |
| 0.0273        | 8.97  | 2862 | 0.0137          |
| 0.0186        | 9.97  | 3180 | 0.0060          |
| 0.0186        | 10.97 | 3498 | 0.0038          |
| 0.0122        | 11.96 | 3816 | 0.0042          |
| 0.0082        | 12.96 | 4134 | 0.0093          |
| 0.0082        | 13.96 | 4452 | 0.0021          |
| 0.0063        | 14.95 | 4770 | 0.0019          |


### Framework versions

- Transformers 4.39.1
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2