--- base_model: vinai/phobert-base-v2 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: PhoBERT-Final_Mixed-aug_insert_BERT-1 results: [] --- # PhoBERT-Final_Mixed-aug_insert_BERT-1 This model is a fine-tuned version of [vinai/phobert-base-v2](https://huggingface.co/vinai/phobert-base-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2876 - Accuracy: 0.66 - F1: 0.6737 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 41 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8758 | 1.0 | 87 | 0.7479 | 0.67 | 0.6552 | | 0.5767 | 2.0 | 174 | 0.6555 | 0.74 | 0.7384 | | 0.4132 | 3.0 | 261 | 0.7503 | 0.75 | 0.7532 | | 0.2927 | 4.0 | 348 | 0.8208 | 0.68 | 0.6890 | | 0.2246 | 5.0 | 435 | 1.0222 | 0.68 | 0.6927 | | 0.1536 | 6.0 | 522 | 1.1675 | 0.67 | 0.6839 | | 0.1218 | 7.0 | 609 | 1.2362 | 0.66 | 0.6737 | | 0.1142 | 8.0 | 696 | 1.2876 | 0.66 | 0.6737 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3