--- base_model: vinai/phobert-base-v2 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: PhoBERT-Final_Mixed-aug_insert_BERT-1 results: [] --- # PhoBERT-Final_Mixed-aug_insert_BERT-1 This model is a fine-tuned version of [vinai/phobert-base-v2](https://huggingface.co/vinai/phobert-base-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1594 - Accuracy: 0.72 - F1: 0.7195 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 41 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.9312 | 1.0 | 88 | 0.7278 | 0.68 | 0.6701 | | 0.6476 | 2.0 | 176 | 0.7024 | 0.71 | 0.7039 | | 0.4815 | 3.0 | 264 | 0.7657 | 0.7 | 0.6959 | | 0.341 | 4.0 | 352 | 0.8302 | 0.7 | 0.6994 | | 0.2368 | 5.0 | 440 | 0.8699 | 0.72 | 0.7229 | | 0.1705 | 6.0 | 528 | 1.0489 | 0.71 | 0.7094 | | 0.1169 | 7.0 | 616 | 1.1685 | 0.71 | 0.7094 | | 0.1176 | 8.0 | 704 | 1.1594 | 0.72 | 0.7195 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3