--- base_model: vinai/phobert-base-v2 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: PhoBERT-Final_Mixed-aug_insert_w2v-1 results: [] --- # PhoBERT-Final_Mixed-aug_insert_w2v-1 This model is a fine-tuned version of [vinai/phobert-base-v2](https://huggingface.co/vinai/phobert-base-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.4343 - Accuracy: 0.68 - F1: 0.6880 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 41 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8759 | 1.0 | 85 | 0.7015 | 0.69 | 0.6757 | | 0.5289 | 2.0 | 170 | 0.6832 | 0.73 | 0.7309 | | 0.3305 | 3.0 | 255 | 0.7459 | 0.68 | 0.6874 | | 0.2115 | 4.0 | 340 | 0.9393 | 0.71 | 0.7102 | | 0.1307 | 5.0 | 425 | 1.1584 | 0.68 | 0.6905 | | 0.0937 | 6.0 | 510 | 1.2802 | 0.67 | 0.6791 | | 0.0892 | 7.0 | 595 | 1.3824 | 0.69 | 0.6985 | | 0.0719 | 8.0 | 680 | 1.4343 | 0.68 | 0.6880 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3