--- base_model: vinai/phobert-base-v2 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: PhoBERT-Final_Mixed-aug_insert_w2v-2 results: [] --- # PhoBERT-Final_Mixed-aug_insert_w2v-2 This model is a fine-tuned version of [vinai/phobert-base-v2](https://huggingface.co/vinai/phobert-base-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2182 - Accuracy: 0.69 - F1: 0.6910 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 40 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.9152 | 1.0 | 86 | 0.7599 | 0.68 | 0.6556 | | 0.6043 | 2.0 | 172 | 0.7114 | 0.7 | 0.7023 | | 0.4061 | 3.0 | 258 | 0.7314 | 0.73 | 0.7344 | | 0.2797 | 4.0 | 344 | 0.9199 | 0.71 | 0.7051 | | 0.183 | 5.0 | 430 | 1.0362 | 0.71 | 0.7083 | | 0.1371 | 6.0 | 516 | 1.1032 | 0.71 | 0.7065 | | 0.0894 | 7.0 | 602 | 1.1811 | 0.71 | 0.7101 | | 0.0779 | 8.0 | 688 | 1.2182 | 0.69 | 0.6910 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3